Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 894: 164902, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343877

RESUMEN

The accumulation of fallout radionuclides (FRNs) from nuclear weapons testing and nuclear accidents has been evaluated for over half a century in natural environments; however, until recently their distribution and abundance within glaciers have been poorly understood. Following a series of individual studies of FRNs, specifically 137Cs, 241Am and 210Pb, deposited on the surface of glaciers, we now understand that cryoconite, a material commonly found in the supraglacial environment, is a highly efficient accumulator of FRNs, both artificial and natural. However, the variability of FRN activity concentrations in cryoconite across the global cryosphere has never been assessed. This study thus aims to both synthesize current knowledge on FRNs in cryoconite and assess the controls on variability of activity concentrations. We present a global database of new and previously published data based on gamma spectrometry of cryoconite and proglacial sediments, and assess the extent to which a suite of environmental and physical factors can explain spatial variability in FRN activity concentrations in cryoconite. We show that FRNs are not only found in cryoconite on glaciers within close proximity to specific sources of radioactivity, but across the global cryosphere, and at activity concentrations up to three orders of magnitude higher than those found in soils and sediments in the surrounding environment. We also show that the organic content of cryoconite exerts a strong control on accumulation of FRNs, and that activity concentrations in cryoconite are some of the highest ever described in environmental matrices outside of nuclear exclusion zones, occasionally in excess of 10,000 Bq kg-1. These findings highlight a need for significant improvements in the understanding of the fate of legacy contaminants within glaciated catchments. Future interdisciplinary research is required on the mechanisms governing their accumulation, storage, and mobility, and their potential to create time-dependent impacts on downstream water quality and ecosystem sustainability.

2.
Sci Total Environ ; 814: 152656, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34954174

RESUMEN

This study is a first survey of the occurrence of artificial (137Cs, 241Am, 207Bi, Pu isotopes) and natural (210Pb, 228Ac, 214Bi, 40K) radionuclides in Norwegian cryoconite. Cryoconite samples were collected before (12 samples) and after (5 samples) a rainfall event, after which 7 cryoconite holes dissapeared. The concentrations of radionuclides in cryoconite samples from the Blåisen Glacier are compared with data from the Arctic and Alpine glaciers. Cryoconite samples from the studied glacier had extremely high activity concentrations of 137Cs, 241Am, 207Bi and 239+240Pu (up to 25,000 Bq/kg, 58 Bq/kg, 13 Bq/kg and 131 Bq/kg, respectively) and also high concentrations of organic matter (OM), comparing to other Scandinavian and Arctic glaciers, reaching up to ~40% of total mass. The outstandingly high concentrations of 137Cs, 241Am, Pu isotopes, and 207Bi on the Blåisen Glacier are primarily related to bioaccumulation of radionuclides in organic-rich cryoconite and might be enhanced by additional transfers of contamination from the tundra by lemmings during their population peaks. The presumed influence of intense rainfall on radionuclide concentrations in the cryoconite was not confirmed.


Asunto(s)
Cubierta de Hielo , Radiactividad , Regiones Árticas
3.
Ambio ; 48(11): 1252-1263, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31542886

RESUMEN

Pollution with excess nutrients deteriorate the water quality of the Baltic Sea. The effect of combined land use and climate scenarios on nitrate leaching and nitrogen (N) loads to surface waters from two Baltic Sea catchments (Norsminde in Denmark and Kocinka in Poland) was explored using different models; the NLES and Daisy models for nitrate leaching, and MIKE SHE or MODFLOW/MT3DMS for N transport. Three Shared Socioeconomic Pathways (SSP1, SSP2 and SSP5) defined change in land use and agricultural activities. The climate change scenarios covered 2041-2060 compared with 1991-2010 under RCP8.5, applying four different climate models. Increases in predicted N-load from climate change vary from 20 to 60% depending on climate model. SSPs moderate these N-load changes with small changes for SSP1 to large increases for SSP5, with greater increases for Norsminde than Kocinka due to land use differences. This stresses needs for new measures and governing schemes to meet sustainability targets.


Asunto(s)
Agricultura , Nitratos , Cambio Climático , Conservación de los Recursos Naturales , Dinamarca , Polonia
4.
Ambio ; 48(11): 1278-1289, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31187428

RESUMEN

The Baltic Sea Action Plan and the EU Water Framework Directive both require substantial additional reductions of nutrient loads (N and P) to the marine environment. Focusing on nitrogen, we present a widely applicable concept for spatially differentiated regulation, exploiting the large spatial variations in the natural removal of nitrate in groundwater and surface water. By targeting mitigation measures towards areas where nature's own capacity for removal is low, spatially differentiated regulation can be more cost-effective than the traditional uniform regulation. We present a methodology for upscaling local modelling results on targeted measures at field scale to Baltic Sea drainage basin scale. The paper assesses the potential gain and discusses key challenges related to implementation of spatially differentiated regulation, including the need for more scientific knowledge, handling of uncertainties, practical constraints related to agricultural practice and introduction of co-governance regimes.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Agricultura , Países Bálticos , Nitrógeno
5.
J Environ Radioact ; 178-179: 193-202, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28881250

RESUMEN

A survey of artificial (137Cs, 238Pu, 239+240Pu, 241Am) and natural (226Ra, 232Th, 40K, 210Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137Cs inventories range from below the detection limit to nearly 120 kBq m-2, this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Monitoreo de Radiación , Regiones Árticas , Atmósfera , Radioisótopos de Cesio/análisis , Cubierta de Hielo , Suelo/química , Contaminantes Radiactivos del Suelo/análisis
6.
J Radioanal Nucl Chem ; 311(2): 1511-1516, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28250550

RESUMEN

In the presented paper analysis of sensitivity of self-attenuation correction Cs to the accuracy of chemical composition analysis is presented. The analyses were done by means of Monte Carlo simulation for cylindrical samples and for four sample materials: peat, water, ash and soil. For each of these materials the major elements were selected whose determination in the analysed material is necessary. For the remaining elements threshold levels of their concentration were determined-if expected element concentration in a sample exceeds this value, its determination is indispensable, assuming the accuracy of Cs determination at 3 %.

7.
Front Chem ; 2: 32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24918100

RESUMEN

The European Groundwater Directive could be improved by limiting the scopes of the Annexes I and II to the manmade and natural substances, respectively, and by defining a common monitoring protocol. The changes in the European landuse patterns, in particular the urban sprawl phenomena, obscure the distinction between the point and diffuse sources of contamination. In the future more importance will be given to the household contamination. Moreover, the agricultural environment could be used for developing new conceptual models related to the pharmaceuticals.

8.
Appl Radiat Isot ; 87: 387-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24387906

RESUMEN

The accuracy of estimation of the self-attenuation correction Cs with the Cutshall transmission method in (210)Pb measurements by gamma-spectrometry was assessed using the Monte Carlo method. The Cutshall method overestimates the correction for samples with linear attenuation coefficient at 46.5 keV higher than that of the standard and underestimates it in the opposite case. The highest bias was found for thick samples. C(s,Cuts)/C(s) ratio grows linearly with sample linear attenuation coefficient.

9.
Isotopes Environ Health Stud ; 47(4): 415-37, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22166151

RESUMEN

The issue of natural radioactivity in groundwater is reviewed, with emphasis on those radioisotopes which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The term 'natural radioactivity' is used in this context to cover all radioactivity present in the environment, including man-made (anthropogenic) radioactivity. Comprehensive discussion of radiological aspects of the presence of natural radionuclides in groundwater, including an overview of current regulations dealing with radioactivity in drinking water, is provided. The presented data indicate that thorough assessments of the committed doses resulting from the presence of natural radioactivity in groundwater are needed, particularly when such water is envisaged for regular intake by infants. They should be based on a precise determination of radioactivity concentration levels of the whole suite of radionuclides, including characterisation of their temporal variability. Equally important is a realistic assessment of water intake values for specific age groups. Only such an evaluation may provide the basis for possible remedial actions.


Asunto(s)
Agua Subterránea/análisis , Radioisótopos/análisis , Europa (Continente) , Monitoreo de Radiación , Radiactividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...