Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Clin Exp Dent Res ; 8(6): 1496-1504, 2022 12.
Article En | MEDLINE | ID: mdl-35938907

OBJECTIVE: To investigate the fatigue behavior of cast and laser-sintered cobalt-chromium (CoCr) and polyetheretherketone (PEEK) material for a removable partial denture (RPD) clasps. METHODS: Dumbbell-shaped specimens were digitally designed with the center part of the dumbbell being a half-round shape at the cross-sectional dimension of 1.25 mm to simulate a typical clasp design and dimensions. A fatigue machine with an offset axis rotation system simulated a typical undercut depth of 0.25, 0.50, and 0.75 mm. Each group was subjected to 30,000 fatigue cycles (simulating 21 years) or till specimen failure. Before testing, the stress value at each undercut depth for each specimen was established in a universal testing machine and SN curves were plotted for each group. Data were statistically analyzed using Kruskal-Wallis and post hoc tests. The fractured surfaces were analyzed using SEM. RESULTS: The average fatigue cycles with 0.25, 0.50, and 0.75 mm undercuts were 27,155 ± 6277, 9298 ± 4033, 5642 ± 8785 for cast CoCr and 26,765 ± 6150, 11,318 ± 7931, 2861 ± 4803, for laser-sintered CoCr, respectively. Apart from three specimens, the PEEK groups did not fail during the simulation period. Clasps with 0.25 mm deflection showed significantly higher fatigue resistance than other groups (p < .001). There was no significant difference in fatigue behavior between the cast and laser-sintered CoCr. Microporosities at the fractured site along with irregular crack propagation were observed for cast and laser-sintered CoCr specimens. Fatigue-induced broken polymer crosslinking chains were observed in PEEK specimens. CONCLUSION: PEEK material exhibited the highest fatigue resistance and significantly lower deflection resistance. Cast and laser-sintered CoCr showed similar fatigue resistance and behavior.


Denture, Partial, Removable , Cobalt , Chromium , Chromium Alloys , Cross-Sectional Studies , Dental Stress Analysis , Materials Testing , Ketones , Lasers , Polyethylene Glycols
2.
Saudi Dent J ; 33(7): 546-553, 2021 Nov.
Article En | MEDLINE | ID: mdl-34803299

INTRODUCTION: Titanium (Ti) is widely accepted as a biomaterial for orthopaedic and dental implants, primarily due to its capacity to integrate directly into the bone and its superior corrosion resistance. It has been suggested that titanium-zirconium alloy (TiZr), with 13-17% of zirconium, has better mechanical properties than pure Ti, but there are very few published studies assessing the suitability of TiZr for high-load- bearing implants. This study aimed to compare the mechanical properties and microstructures of TiZr and commercially pure titanium (Ti). METHODOLOGY: Pure Ti and TiZr alloy discs were prepared and subjected to characterisation by nanoindentation, electron dispersive spectroscopy (EDS), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD). RESULTS: The TiZr alloy was found to have significantly lower elastic modulus value (p < 0.0001) and greater hardness than Ti (p < 0.05). The EDS results confirmed the presence of Zr (13-17%) in the TiZr alloy, with XRD and EBSD images showing microstructure with the alpha phase similar to commercially available Ti. CONCLUSION: The lower elastic modulus, higher hardness, presence of alpha phase, and the finer grain size of the TiZr alloy make it more suitable for high-load-bearing implants compared to commercially available Ti and is likely to encourage a positive biological response.

...