Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
2.
Clin Transl Immunology ; 11(6): e1396, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663920

RESUMEN

Objectives: There is an urgent need to be able to identify individuals with asymptomatic Leishmania donovani infection, so their risk of progressing to VL and transmitting parasites can be managed. This study examined transcriptional markers expressed by CD4+ T cells that could distinguish asymptomatic individuals from endemic controls and visceral leishmaniasis (VL) patients. Methods: CD4+ T cells were isolated from individuals with asymptomatic L. donovani infection, endemic controls and VL patients. RNA was extracted and RNAseq employed to identify differentially expressed genes. The expression of one gene and its protein product during asymptomatic infection were evaluated. Results: Amphiregulin (AREG) was identified as a distinguishing gene product in CD4+ T cells from individuals with asymptomatic L. donovani infection, compared to VL patients and healthy endemic control individuals. AREG levels in plasma and antigen-stimulated whole-blood assay cell culture supernatants were significantly elevated in asymptomatic individuals, compared to endemic controls and VL patients. Regulatory T (Treg) cells were identified as an important source of AREG amongst CD4+ T-cell subsets in asymptomatic individuals. Conclusion: Increased Treg cell AREG expression was identified in individuals with asymptomatic L. donovani infection, suggesting the presence of an ongoing inflammatory response in these individuals required for controlling infection and that AREG may play an important role in preventing inflammation-induced tissue damage and subsequent disease in asymptomatic individuals.

3.
Cell Rep ; 30(8): 2512-2525.e9, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101732

RESUMEN

Type I interferons (IFNs) play critical roles in anti-viral and anti-tumor immunity. However, they also suppress protective immune responses in some infectious diseases. Here, we identify type I IFNs as major upstream regulators of CD4+ T cells from visceral leishmaniasis (VL) patients. Furthermore, we report that mice deficient in type I IFN signaling have significantly improved control of Leishmania donovani, a causative agent of human VL, associated with enhanced IFNγ but reduced IL-10 production by parasite-specific CD4+ T cells. Importantly, we identify a small-molecule inhibitor that can be used to block type I IFN signaling during established infection and acts synergistically with conventional anti-parasitic drugs to improve parasite clearance and enhance anti-parasitic CD4+ T cell responses in mice and humans. Thus, manipulation of type I IFN signaling is a promising strategy for improving disease outcome in VL patients.


Asunto(s)
Inmunidad/efectos de los fármacos , Interferón Tipo I/farmacología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Parásitos/inmunología , Anfotericina B/farmacología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Epítopos , Humanos , Inflamación/inmunología , Inflamación/patología , Interferón gamma/farmacología , Ratones Endogámicos C57BL , Nitrilos , Parásitos/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Stud Health Technol Inform ; 266: 149-155, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31397316

RESUMEN

Genomic testing is rapidly moving into healthcare practice. However it comes with informatics challenges that the healthcare system has not previously faced - the raw data can be hundreds of gigabytes per test, the compute demands can be thousands of CPU hours, and the test can reveal deeply private health-srelated information that can have implications for anyone related to the person tested. While not a panacea, cloud computing has particular properties that can ameliorate some of these difficulties. This paper presents some of the key lessons learned while deploying a set of genomic analyses on cloud computing for Queensland Genomics.


Asunto(s)
Genómica , Nube Computacional , Queensland
5.
J Natl Cancer Inst ; 110(9): 1030-1034, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29506079

RESUMEN

Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/genética , Heterocigoto , Mutación , Adulto , Anciano , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genómica/métodos , Mutación de Línea Germinal , Humanos , Persona de Mediana Edad , Secuenciación del Exoma
6.
Am J Respir Crit Care Med ; 196(3): 388-391, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28762784
7.
Nat Immunol ; 18(9): 1004-1015, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28759001

RESUMEN

Avoiding destruction by immune cells is a hallmark of cancer, yet how tumors ultimately evade control by natural killer (NK) cells remains incompletely defined. Using global transcriptomic and flow-cytometry analyses and genetically engineered mouse models, we identified the cytokine-TGF-ß-signaling-dependent conversion of NK cells (CD49a-CD49b+Eomes+) into intermediate type 1 innate lymphoid cell (intILC1) (CD49a+CD49b+Eomes+) populations and ILC1 (CD49a+CD49b-Eomesint) populations in the tumor microenvironment. Strikingly, intILC1s and ILC1s were unable to control local tumor growth and metastasis, whereas NK cells favored tumor immunosurveillance. Experiments with an antibody that neutralizes the cytokine TNF suggested that escape from the innate immune system was partially mediated by TNF-producing ILC1s. Our findings provide new insight into the plasticity of group 1 ILCs in the tumor microenvironment and suggest that the TGF-ß-driven conversion of NK cells into ILC1s is a previously unknown mechanism by which tumors escape surveillance by the innate immune system.


Asunto(s)
Reprogramación Celular/inmunología , Fibrosarcoma/inmunología , Neoplasias Gastrointestinales/inmunología , Tumores del Estroma Gastrointestinal/inmunología , Inmunidad Innata/inmunología , Células Asesinas Naturales/inmunología , Neoplasias Experimentales/inmunología , Escape del Tumor/inmunología , Animales , Estudios de Casos y Controles , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Células Asesinas Naturales/citología , Linfocitos/citología , Linfocitos/inmunología , Ratones , Análisis de Secuencia de ARN , Transducción de Señal , Factor de Crecimiento Transformador beta/inmunología
8.
BMC Cancer ; 15: 506, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26152113

RESUMEN

BACKGROUND: While a number of studies have examined miRNA profiles across the molecular subtypes of breast cancer, it is unclear whether BRCA1 basal-like cancers have a specific miRNA profile. This study aims to compare grade independent miRNA expression in luminal cancers, sporadic and BRCA1 basal-type breast cancers. It also aims to ascertain an immunohistochemical profile regulated by BRCA1 specific miRNAs for potential diagnostic use. METHODS: miRNA expression was assessed in 11 BRCA1 basal, 16 sporadic basal, 17 luminal grade 3 cancers via microarrays. The expression of Cyclin D1, FOXP1, FIH-1, pan-ERß, NRP1 and CD99, predicted to be regulated by BRCA1 specific miRNAs by computer prediction algorithms, was assessed via immunohistochemistry in a cohort of 35 BRCA1 and 52 sporadic basal-like cancers. Assessment of cyclin D1, FOXP1, NRP1 and CD99 expression was repeated on a validation cohort of 82 BRCA1 and 65 sporadic basal-like breast cancers. RESULTS: Unsupervised clustering of basal cancers resulted in a "sporadic" cluster of 11 cancers, and a "BRCA1" cluster of 16 cancers, including a subgroup composed entirely of 10 BRCA1 cancers. Compared with sporadic basal cancers, BRCA1 cancers showed reduced positivity for proteins predicted to be regulated by miRNAs: FOXP1 (6/20[30 %] vs. 37/49[76 %], p < 0.001), cyclin D1 (8/22[36 %] vs. 30/46[65 %], p = 0.025), NRP1 (2/20[10 %] vs. 23/46[50 %], p = 0.002). This was confirmed in the validation cohort (all p < 0.001). Negative staining for 2 or more out of FOXP1, cyclin D1 and NRP1 predicts germline BRCA1 mutation with a sensitivity of 92 %, specificity of 44 %, positive predictive value of 38 % and a negative predictive value of 94 %. CONCLUSION: Sporadic and BRCA1 basal-like cancers have grade independent miRNA expression profiles. Furthermore miRNA driven differences in the expression of proteins in BRCA1 basal cancers may be detected via immunohistochemistry. These findings may have important diagnostic implications, as immunohistochemical assessment of basal cancers, in addition to the patient's family and clinical history, may potentially identify patients who may benefit from BRCA1 gene testing.


Asunto(s)
Neoplasias de la Mama/genética , Genes BRCA1 , Estudios de Asociación Genética , MicroARNs/genética , Mutación , Neoplasias Basocelulares/genética , Transcriptoma , Biomarcadores de Tumor , Neoplasias de la Mama/patología , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Inmunohistoquímica , Clasificación del Tumor , Neoplasias Basocelulares/patología , Interferencia de ARN , ARN Mensajero/genética
9.
PLoS One ; 10(5): e0125232, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25969993

RESUMEN

BACKGROUND: Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown. MATERIALS AND METHODS: Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed. RESULTS: Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer. CONCLUSIONS: Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non-small cell lung cancer, accompanying mutations in PIK3CA may confer gefitinib resistance.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Transformación Celular Neoplásica/genética , Receptores ErbB/genética , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Fosfatidilinositol 3-Quinasa Clase I , Variaciones en el Número de Copia de ADN , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Exoma , Femenino , Gefitinib , Expresión Génica , Humanos , Ratones , Ratones Desnudos , Modelos Biológicos , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cancer ; 120(23): 3669-75, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25313458

RESUMEN

BACKGROUND: Inherited predisposition to pancreatic cancer contributes significantly to its incidence and presents an opportunity for the development of early detection strategies. The genetic basis of predisposition remains unexplained in a high proportion of patients with familial PC (FPC). METHODS: Clinicopathologic features were assessed in a cohort of 766 patients who had been diagnosed with pancreatic ductal adenocarcinoma (PC). Patients were classified with FPC if they had ≥1 affected first-degree relatives; otherwise, they were classified with sporadic PC (SPC). RESULTS: The prevalence of FPC in this cohort was 8.9%. In FPC families with an affected parent-child pair, 71% in the subsequent generation were 12.3 years younger at diagnosis. Patients with FPC had more first-degree relatives who had an extrapancreatic malignancy (EPM) (42.6% vs 21.2; P<.0001), particularly melanoma and endometrial cancer, but not a personal history of EPM. Patients with SPC were more likely to be active smokers, have higher cumulative tobacco exposure, and have fewer multifocal precursor lesions, but these were not associated with differences in survival. Long-standing diabetes mellitus (>2 years) was associated with poor survival in both groups. CONCLUSIONS: FPC represents 9% of PC, and the risk of malignancy in kindred does not appear to be confined to the pancreas. Patients with FPC have more precursor lesions and include fewer active smokers, but other clinicopathologic factors and outcome are similar to those in patients with SPC. Furthermore, some FPC kindreds may exhibit anticipation. A better understanding of the clinical features of PC will facilitate efforts to uncover novel susceptibility genes and the development of early detection strategies.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma/genética , Neoplasias Primarias Múltiples/genética , Neoplasias Pancreáticas/genética , Anciano , Consumo de Bebidas Alcohólicas/epidemiología , Carcinoma/epidemiología , Carcinoma/patología , Carcinoma Ductal Pancreático/epidemiología , Carcinoma Ductal Pancreático/patología , Estudios de Casos y Controles , Estudios de Cohortes , Diabetes Mellitus/epidemiología , Neoplasias Endometriales/genética , Femenino , Humanos , Masculino , Melanoma/genética , Persona de Mediana Edad , Neoplasias Primarias Múltiples/epidemiología , Neoplasias Primarias Múltiples/patología , Neoplasias Pancreáticas/epidemiología , Neoplasias Pancreáticas/patología , Factores de Riesgo , Fumar/epidemiología
11.
Biotechniques ; 57(1): 31-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25005691

RESUMEN

Somatic rearrangements, which are commonly found in human cancer genomes, contribute to the progression and maintenance of cancers. Conventionally, the verification of somatic rearrangements comprises many manual steps and Sanger sequencing. This is labor intensive when verifying a large number of rearrangements in a large cohort. To increase the verification throughput, we devised a high-throughput workflow that utilizes benchtop next-generation sequencing and in-house bioinformatics tools to link the laboratory processes. In the proposed workflow, primers are automatically designed. PCR and an optional gel electrophoresis step to confirm the somatic nature of the rearrangements are performed. PCR products of somatic events are pooled for Ion Torrent PGM and/or Illumina MiSeq sequencing, the resulting sequence reads are assembled into consensus contigs by a consensus assembler, and an automated BLAT is used to resolve the breakpoints to base level. We compared sequences and breakpoints of verified somatic rearrangements between the conventional and high-throughput workflow. The results showed that next-generation sequencing methods are comparable to conventional Sanger sequencing. The identified breakpoints obtained from next-generation sequencing methods were highly accurate and reproducible. Furthermore, the proposed workflow allows hundreds of events to be processed in a shorter time frame compared with the conventional workflow.


Asunto(s)
Puntos de Rotura del Cromosoma , Cromosomas Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuencia de Bases , Carcinoma Ductal Pancreático/genética , Aberraciones Cromosómicas , Cartilla de ADN , Humanos , Datos de Secuencia Molecular , Neoplasias/genética , Neoplasias Pancreáticas/genética , Reacción en Cadena de la Polimerasa/métodos , Flujo de Trabajo
12.
Int J Cancer ; 135(5): 1110-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24500968

RESUMEN

The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome-wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high-density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non-malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5' region of genes (including the proximal promoter, 5'UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF-ß, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT-ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT-PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT-ROBO signaling and up-regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Adhesión Celular/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Integrina alfa2/genética , Integrinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Conductos Pancreáticos/patología , Células Estrelladas Pancreáticas/patología , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/biosíntesis , Receptores Inmunológicos/genética , Análisis de Secuencia de ADN , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética , Proteínas Wnt/genética , Proteínas Roundabout
13.
RNA ; 19(12): 1767-80, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24158791

RESUMEN

Metastasis is a complex, multistep process involved in the progression of cancer from a localized primary tissue to distant sites, often characteristic of the more aggressive forms of this disease. Despite being studied in great detail in recent years, the mechanisms that govern this process remain poorly understood. In this study, we identify a novel role for miR-139-5p in the inhibition of breast cancer progression. We highlight its clinical relevance by reviewing miR-139-5p expression across a wide variety of breast cancer subtypes using in-house generated and online data sets to show that it is most frequently lost in invasive tumors. A biotin pull-down approach was then used to identify the mRNA targets of miR-139-5p in the breast cancer cell line MCF7. Functional enrichment analysis of the pulled-down targets showed significant enrichment of genes in pathways previously implicated in breast cancer metastasis (P < 0.05). Further bioinformatic analysis revealed a predicted disruption to the TGFß, Wnt, Rho, and MAPK/PI3K signaling cascades, implying a potential role for miR-139-5p in regulating the ability of cells to invade and migrate. To corroborate this finding, using the MDA-MB-231 breast cancer cell line, we show that overexpression of miR-139-5p results in suppression of these cellular phenotypes. Furthermore, we validate the interaction between miR-139-5p and predicted targets involved in these pathways. Collectively, these results suggest a significant functional role for miR-139-5p in breast cancer cell motility and invasion and its potential to be used as a prognostic marker for the aggressive forms of breast cancer.


Asunto(s)
Carcinoma Ductal de Mama/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/fisiología , Neoplasias de la Mama Triple Negativas/genética , Secuencia de Bases , Sitios de Unión , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/secundario , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Replicación del ADN , Femenino , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Invasividad Neoplásica , Interferencia de ARN , Transducción de Señal , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
14.
Lab Invest ; 93(6): 701-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23568031

RESUMEN

Pathology archives contain vast resources of clinical material in the form of formalin-fixed paraffin-embedded (FFPE) tissue samples. Owing to the methods of tissue fixation and storage, the integrity of DNA and RNA available from FFPE tissue is compromized, which means obtaining informative data regarding epigenetic, genomic, and expression alterations can be challenging. Here, we have investigated the utility of repairing damaged DNA derived from FFPE tumors prior to single-nucleotide polymorphism (SNP) arrays for whole-genome DNA copy number analysis. DNA was extracted from FFPE samples spanning five decades, involving tumor material obtained from surgical specimens and postmortems. Various aspects of the protocol were assessed, including the method of DNA extraction, the role of Quality Control quantitative PCR (qPCR) in predicting sample success, and the effect of DNA restoration on assay performance, data quality, and the prediction of copy number aberrations (CNAs). DNA that had undergone the repair process yielded higher SNP call rates, reduced log R ratio variance, and improved calling of CNAs compared with matched FFPE DNA not subjected to repair. Reproducible mapping of genomic break points and detection of focal CNAs representing high-level gains and homozygous deletions (HD) were possible, even on autopsy material obtained in 1974. For example, DNA amplifications at the ERBB2 and EGFR gene loci and a HD mapping to 13q14.2 were validated using immunohistochemistry, in situ hybridization, and qPCR. The power of SNP arrays lies in the detection of allele-specific aberrations; however, this aspect of the analysis remains challenging, particularly in the distinction between loss of heterozygosity (LOH) and copy neutral LOH. In summary, attempting to repair DNA that is damaged during fixation and storage may be a useful pretreatment step for genomic studies of large archival FFPE cohorts with long-term follow-up or for understanding rare cancer types, where fresh frozen material is scarce.


Asunto(s)
Neoplasias de la Mama/genética , Hibridación Genómica Comparativa , ADN/análisis , Polimorfismo de Nucleótido Simple , Bancos de Tejidos , ADN/química , Variaciones en el Número de Copia de ADN , Femenino , Fijadores , Formaldehído , Humanos , Adhesión en Parafina , Reacción en Cadena de la Polimerasa , Proyectos de Investigación
15.
RNA ; 19(2): 230-42, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23249749

RESUMEN

MicroRNAs are noncoding regulators of gene expression, which act by repressing protein translation and/or degrading mRNA. Many have been shown to drive tumorigenesis in cancer, but functional studies to understand their mode of action are typically limited to single-target genes. In this study, we use synthetic biotinylated miRNA to pull down endogenous targets of miR-182-5p. We identified more than 1000 genes as potential targets of miR-182-5p, most of which have a known function in pathways underlying tumor biology. Specifically, functional enrichment analysis identified components of both the DNA damage response pathway and cell cycle to be highly represented in this target cohort. Experimental validation confirmed that miR-182-5p-mediated disruption of the homologous recombination (HR) pathway is a consequence of its ability to target multiple components in that pathway. Although there is a strong enrichment for the cell cycle ontology, we do not see primary proliferative defects as a consequence of miR-182-5p overexpression. We highlight targets that could be responsible for miR-182-5p-mediated disruption of other biological processes attributed in the literature so far. Finally, we show that miR-182-5p is highly expressed in a panel of human breast cancer samples, highlighting its role as a potential oncomir in breast cancer.


Asunto(s)
Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Reparación del ADN/genética , MicroARNs/metabolismo , Proteína BRCA1/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Análisis por Conglomerados , Estudios de Cohortes , Daño del ADN , Femenino , Perfilación de la Expresión Génica , Células HeLa , Recombinación Homóloga/genética , Humanos , MicroARNs/genética , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Regulación hacia Arriba
16.
PLoS One ; 7(9): e45835, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049875

RESUMEN

Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 ([Formula: see text]-value=0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 ([Formula: see text]-value [Formula: see text] 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 ([Formula: see text]-value=0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.


Asunto(s)
Biología Computacional/métodos , Polimorfismo de Nucleótido Simple , Algoritmos , Línea Celular Tumoral , Exones , Regulación de la Expresión Génica , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Pérdida de Heterocigocidad , Modelos Genéticos , Modelos Estadísticos , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Análisis de Regresión , Análisis de Secuencia de ADN , Programas Informáticos
17.
Hum Mutat ; 33(12): 1665-75, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22753153

RESUMEN

Mutations in the BRCA1 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron-exon boundaries, precluding the identification of mutations in noncoding and untranslated regions (UTR). As 3'UTR mutations can influence cancer susceptibility by altering protein and microRNA (miRNA) binding regions, we screened the BRCA1 3'UTR for mutations in a large series of BRCA-mutation negative, population and clinic-based breast cancer cases, and controls. Fifteen novel BRCA1 3'UTR variants were identified, the majority of which were unique to either cases or controls. Using luciferase reporter assays, three variants found in cases, c.* 528G>C, c.* 718A>G, and c.* 1271T>C and four found in controls, c.* 309T>C, c.* 379G>A, c.* 823C>T, and c.* 264C>T, reduced 3'UTR activity (P < 0.02), whereas two variants found in cases, c.* 291C>T and c.* 1139G>T, increased 3'UTR activity (P < 0.01). Three case variants, c.* 718A>G, c.* 800T>C, and c.* 1340_1342delTGT, were predicted to create new miRNA binding sites and c.* 1340_1342delTGT caused a reduction (25%, P = 0.0007) in 3'UTR reporter activity when coexpressed with the predicted targeting miRNA, miR-103. This is the most comprehensive identification and analysis of BRCA1 3'UTR variants published to date.


Asunto(s)
Regiones no Traducidas 3' , Proteína BRCA1/genética , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Mutación de Línea Germinal , MicroARNs/genética , Adulto , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Estudios de Casos y Controles , Línea Celular Tumoral , Secuencia Conservada , Análisis Mutacional de ADN , Proteínas ELAV , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Humanos , Conformación de Ácido Nucleico , Polimorfismo de Nucleótido Simple , Unión Proteica , Interferencia de ARN , ARN Mensajero/genética
18.
BMC Cancer ; 12: 246, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22703186

RESUMEN

BACKGROUND: Identification of novel, highly penetrant, breast cancer susceptibility genes will require the application of additional strategies beyond that of traditional linkage and candidate gene approaches. Approximately one-third of inherited genetic diseases, including breast cancer susceptibility, are caused by frameshift or nonsense mutations that truncate the protein product 1. Transcripts harbouring premature termination codons are selectively and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. Blocking the NMD pathway in any given cell will stabilise these mutant transcripts, which can then be detected using gene expression microarrays. This technique, known as gene identification by nonsense-mediated mRNA decay inhibition (GINI), has proved successful in identifying sporadic nonsense mutations involved in many different cancer types. However, the approach has not yet been applied to identify germline mutations involved in breast cancer. We therefore attempted to use GINI on lymphoblastoid cell lines (LCLs) from multiple-case, non- BRCA1/2 breast cancer families in order to identify additional high-risk breast cancer susceptibility genes. METHODS: We applied GINI to a total of 24 LCLs, established from breast-cancer affected and unaffected women from three multiple-case non-BRCA1/2 breast cancer families. We then used Illumina gene expression microarrays to identify transcripts stabilised by the NMD inhibition. RESULTS: The expression profiling identified a total of eight candidate genes from these three families. One gene, PPARGC1A, was a candidate in two separate families. We performed semi-quantitative real-time reverse transcriptase PCR of all candidate genes but only PPARGC1A showed successful validation by being stabilised in individuals with breast cancer but not in many unaffected members of the same family. Sanger sequencing of all coding and splice site regions of PPARGC1A did not reveal any protein truncating mutations. Haplotype analysis using short tandem repeat microsatellite markers did not indicate the presence of a haplotype around PPARGC1A which segregated with disease in the family. CONCLUSIONS: The application of the GINI method to LCLs to identify transcripts harbouring germline truncating mutations is challenging due to a number of factors related to cell type, microarray sensitivity and variations in NMD efficiency.


Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Degradación de ARNm Mediada por Codón sin Sentido/genética , Secuencia de Bases , Cafeína/farmacología , Línea Celular Tumoral , Familia , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Haplotipos , Proteínas de Choque Térmico/genética , Humanos , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , Linaje , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética
19.
Breast Cancer Res Treat ; 135(1): 153-65, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22718308

RESUMEN

The progression of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) marks a critical step in the evolution of breast cancer. There is some evidence to suggest that dynamic interactions between the neoplastic cells and the tumour microenvironment play an important role. Using the whole-genome cDNA-mediated annealing, selection, extension and ligation assay (WG-DASL, Illumina), we performed gene expression profiling on 87 formalin-fixed paraffin-embedded (FFPE) samples from 17 patients consisting of matched IDC, DCIS and three types of stroma: IDC-S (<3 mm from IDC), DCIS-S (<3 mm from DCIS) and breast cancer associated-normal stroma (BC-NS; >10 mm from IDC or DCIS). Differential gene expression analysis was validated by quantitative real time-PCR, immunohistochemistry and immunofluorescence. The expression of several genes was down-regulated in stroma from cancer patients relative to normal stroma from reduction mammoplasties. In contrast, neoplastic epithelium underwent more gene expression changes during progression, including down regulation of SFRP1. In particular, we observed that molecules related to extracellular matrix (ECM) remodelling (e.g. COL11A1, COL5A2 and MMP13) were differentially expressed between DCIS and IDC. COL11A1 was overexpressed in IDC relative to DCIS and was expressed by both the epithelial and stromal compartments but was enriched in invading neoplastic epithelial cells. The contributions of both the epithelial and stromal compartments to the clinically important scenario of progression from DCIS to IDC. Gene expression profiles, we identified differential expression of genes related to ECM remodelling, and specifically the elevated expression of genes such as COL11A1, COL5A2 and MMP13 in epithelial cells of IDC. We propose that these expression changes could be involved in facilitating the transition from in situ disease to invasive cancer and may thus mark a critical point in disease development.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Células del Estroma/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Colágeno Tipo V/biosíntesis , Colágeno Tipo V/genética , Colágeno Tipo XI/biosíntesis , Colágeno Tipo XI/genética , Progresión de la Enfermedad , Matriz Extracelular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Metaloproteinasa 13 de la Matriz/biosíntesis , Metaloproteinasa 13 de la Matriz/genética , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Microambiente Tumoral
20.
Breast Cancer Res ; 14(2): R69, 2012 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-22537934

RESUMEN

INTRODUCTION: The RAD21 gene encodes a key component of the cohesin complex, which is essential for chromosome segregation, and together with BRCA1 and BRCA2, for high-fidelity DNA repair by homologous recombination. Although its expression correlates with early relapse and treatment resistance in sporadic breast cancers, it is unclear whether familial breast cancers behave in a similar manner. METHODS: We performed an immunohistochemical analysis of RAD21 expression in a cohort of 94 familial breast cancers (28 BRCA1, 27 BRCA2, and 39 BRCAX) and correlated these data with genotype and clinicopathologic parameters, including survival. In these cancers, we also correlated RAD21 expression with genomic expression profiling and gene copy-number changes and miRNAs predicted to target RAD21. RESULTS: No significant differences in nuclear RAD21 expression were observed between BRCA1 (12 (43%) of 28), BRCA2 (12 (44%) of 27), and BRCAX cancers (12 (33%) of 39 (p = 0.598). No correlation was found between RAD21 expression and grade, size, or lymph node, ER, or HER2 status (all P > 0.05). As for sporadic breast cancers, RAD21 expression correlated with shorter survival in grade 3 (P = 0.009) and but not in grade 1 (P = 0.065) or 2 cancers (P = 0.090). Expression of RAD21 correlated with poorer survival in patients treated with chemotherapy (P = 0.036) but not with hormonal therapy (P = 0.881). RAD21 expression correlated with shorter survival in BRCA2 (P = 0.006) and BRCAX (P = 0.008), but not BRCA1 cancers (P = 0.713). Changes in RAD21 mRNA were reflected by genomic changes in DNA copy number (P < 0.001) and by RAD21 protein expression, as assessed with immunohistochemistry (P = 0.047). High RAD21 expression was associated with genomic instability, as assessed by the total number of base pairs affected by genomic change (P = 0.048). Of 15 miRNAs predicted to target RAD21, mir-299-5p inversely correlated with RAD21 expression (P = 0.002). CONCLUSIONS: Potential use of RAD21 as a predictive and prognostic marker in familial breast cancers is hence feasible and may therefore take into account the patient's BRCA1/2 mutation status.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular , Estudios de Cohortes , Proteínas de Unión al ADN , Femenino , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Heterocigoto , Humanos , MicroARNs/genética , Persona de Mediana Edad , Proteínas Nucleares/genética , Linaje , Fosfoproteínas/genética , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA