Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
3.
J Sleep Res ; : e13929, 2023 May 13.
Article En | MEDLINE | ID: mdl-37177872

Sleep modulates the immune response, and sleep loss can reduce vaccine immunogenicity; vice versa, immune responses impact sleep. We aimed to investigate the influence of mental health and sleep quality on the immunogenicity of COVID-19 vaccinations and, conversely, of COVID-19 vaccinations on sleep quality. The prospective CoVacSer study monitored mental health, sleep quality and Anti-SARS-CoV-2-Spike IgG titres in a cohort of 1082 healthcare workers from 29 September 2021 to 19 December 2022. Questionnaires and blood samples were collected before, 14 days, and 3 months after the third COVID-19 vaccination, as well as in 154 participants before and 14 days after the fourth COVID-19 vaccination. Healthcare workers with psychiatric disorders had slightly lower Anti-SARS-CoV-2-Spike IgG levels before the third COVID-19 vaccination. However, this effect was mediated by higher median age and body mass index in this subgroup. Antibody titres following the third and fourth COVID-19 vaccinations ("booster vaccinations") were not significantly different between subgroups with and without psychiatric disorders. Sleep quality did not affect the humoral immunogenicity of the COVID-19 vaccinations. Moreover, the COVID-19 vaccinations did not impact self-reported sleep quality. Our data suggest that in a working population neither mental health nor sleep quality relevantly impact the immunogenicity of COVID-19 vaccinations, and that COVID-19 vaccinations do not cause a sustained deterioration of sleep, suggesting that they are not a precipitating factor for insomnia. The findings from this large-scale real-life cohort study will inform clinical practice regarding the recommendation of COVID-19 booster vaccinations for individuals with mental health and sleep problems.

5.
J Med Virol ; 95(1): e28300, 2023 01.
Article En | MEDLINE | ID: mdl-36369641

Against the background of the current COVID-19 infection dynamics with its rapid spread of SARS-CoV-2 variants of concern (VOC), the immunity and the vaccine prevention of healthcare workers (HCWs) against SARS-CoV-2 continues to be of high importance. This observational cross-section study assesses factors influencing the level of anti-SARS-CoV-2-spike IgG after SARS-CoV-2 infection or vaccination. One thousand seven hundred and fifty HCWs were recruited meeting the following inclusion criteria: age ≥18 years, PCR-confirmed SARS-CoV-2 infection convalescence and/or at least one dose of COVID-19 vaccination. anti-SARS-CoV-2-spike IgG titers were determined by SERION ELISA agile SARS-CoV-2 IgG. Mean anti-SARS-CoV-2-spike IgG levels increased significantly by number of COVID-19 vaccinations (92.2 BAU/ml for single, 140.9 BAU/ml for twice and 1144.3 BAU/ml for threefold vaccination). Hybrid COVID-19 immunized respondents (after infection and vaccination) had significantly higher antibody titers compared with convalescent only HCWs. Anti-SARS-CoV-2-spike IgG titers declined significantly with time after the second vaccination. Smoking and high age were associated with lower titers. Both recovered and vaccinated HCWs presented a predominantly good humoral immune response. Smoking and higher age limited the humoral SARS-CoV-2 immunity, adding to the risk of severe infections within this already health impaired collective.


COVID-19 , Humans , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Viral , Health Personnel , Immunoglobulin G
8.
Clin Microbiol Infect ; 29(2): 225-232, 2023 Feb.
Article En | MEDLINE | ID: mdl-36028089

OBJECTIVES: Antigen rapid diagnostic tests (RDTs) for SARS coronavirus 2 (SARS-CoV-2) are quick, widely available, and inexpensive. Consequently, RDTs have been established as an alternative and additional diagnostic strategy to quantitative reverse transcription polymerase chain reaction (RT-qPCR). However, reliable clinical and large-scale performance data specific to a SARS-CoV-2 virus variant of concern (VOC) are limited, especially for the Omicron VOC. The aim of this study was to compare RDT performance among different VOCs. METHODS: This single-centre prospective performance assessment compared RDTs from three manufacturers (NADAL, Panbio, MEDsan) with RT-qPCR including deduced standardized viral load from oropharyngeal swabs for detection of SARS-CoV-2 in a clinical point-of-care setting from November 2020 to January 2022. RESULTS: Among 35 479 RDT/RT-qPCR tandems taken from 26 940 individuals, 164 of the 426 SARS-CoV-2 positive samples tested true positive with an RDT corresponding to an RDT sensitivity of 38.50% (95% CI, 34.00-43.20%), with an overall specificity of 99.67% (95% CI, 99.60-99.72%). RDT sensitivity depended on viral load, with decreasing sensitivity accompanied by descending viral load. VOC-dependent sensitivity assessment showed a sensitivity of 42.86% (95% CI, 32.82-53.52%) for the wild-type SARS-CoV-2, 43.42% (95% CI, 32.86-54.61%) for the Alpha VOC, 37.67% (95% CI, 30.22-45.75%) for the Delta VOC, and 33.67% (95% CI, 25.09-43.49%) for the Omicron VOC. Sensitivity in samples with high viral loads of ≥106 SARS-CoV-2 RNA copies per mL was significantly lower in the Omicron VOC (50.00%; 95% CI, 36.12-63.88%) than in the wild-type SARS-CoV-2 (79.31%; 95% CI, 61.61-90.15%; p 0.015). DISCUSSION: RDT sensitivity for detection of the Omicron VOC is reduced in individuals infected with a high viral load, which curtails the effectiveness of RDTs. This aspect furthert: limits the use of RDTs, although RDTs are still an irreplaceable diagnostic tool for rapid, economic point-of-care and extensive SARS-CoV-2 screening.


COVID-19 , Point-of-Care Systems , Humans , Prospective Studies , RNA, Viral , COVID-19/diagnosis , SARS-CoV-2/genetics , Sensitivity and Specificity
9.
EBioMedicine ; 69: 103455, 2021 Jul.
Article En | MEDLINE | ID: mdl-34186490

BACKGROUND: Antigen rapid diagnostic tests (RDT) for SARS-CoV-2 are fast, broadly available, and inexpensive. Despite this, reliable clinical performance data from large field studies is sparse. METHODS: In a prospective performance evaluation study, RDT from three manufacturers (NADAL®, Panbio™, MEDsan®, conducted on different samples) were compared to quantitative reverse transcription polymerase chain reaction (RT-qPCR) in 5 068 oropharyngeal swabs for detection of SARS-CoV-2 in a hospital setting. Viral load was derived from standardised RT-qPCR Cycle threshold (Ct) values. The data collection period ranged from November 12, 2020 to February 28, 2021. FINDINGS: The sensitivity of RDT compared to RT-qPCR was 42·57% (95% CI 33·38%-52·31%). The specificity was 99·68% (95% CI 99·48%-99·80%). Sensitivity declined with decreasing viral load from 100% in samples with a deduced viral load of ≥108 SARS-CoV-2 RNA copies per ml to 8·82% in samples with a viral load lower than 104 SARS-CoV-2 RNA copies per ml. No significant differences in sensitivity or specificity could be observed between samples with and without spike protein variant B.1.1.7. The NPV in the study cohort was 98·84%; the PPV in persons with typical COVID-19 symptoms was 97·37%, and 28·57% in persons without or with atypical symptoms. INTERPRETATION: RDT are a reliable method to diagnose SARS-CoV-2 infection in persons with high viral load. RDT are a valuable addition to RT-qPCR testing, as they reliably detect infectious persons with high viral loads before RT-qPCR results are available. FUNDING: German Federal Ministry for Education and Science (BMBF), Free State of Bavaria.


COVID-19 Serological Testing/standards , COVID-19/diagnosis , Point-of-Care Testing/standards , Adult , Aged , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/standards , COVID-19 Serological Testing/methods , Female , Humans , Male , Middle Aged , Reagent Kits, Diagnostic/standards , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load
...