Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 8(12): e12392, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36590518

RESUMEN

Malic enzymes (ME1, ME2, and ME3) are involved in cellular energy regulation, redox homeostasis, and biosynthetic processes, through the production of pyruvate and reducing agent NAD(P)H. Recent studies have implicated the third and least well-characterized isoform, mitochondrial NADP+-dependent malic enzyme 3 (ME3), as a therapeutic target for pancreatic cancers. Here, we utilized an integrated structure approach to determine the structures of ME3 in various ligand-binding states at near-atomic resolutions. ME3 is captured in the open form existing as a stable tetramer and its dynamic Domain C is critical for activity. Catalytic assay results reveal that ME3 is a non-allosteric enzyme and does not require modulators for activity while structural analysis suggests that the inner stability of ME3 Domain A relative to ME2 disables allostery in ME3. With structural information available for all three malic enzymes, the foundation has been laid to understand the structural and biochemical differences of these enzymes and could aid in the development of specific malic enzyme small molecule drugs.

2.
Cell Death Dis ; 12(8): 770, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354042

RESUMEN

Rare monogenic disorders often share molecular etiologies involved in the pathogenesis of common diseases. Congenital disorders of glycosylation (CDG) and deglycosylation (CDDG) are rare pediatric disorders with symptoms that range from mild to life threatening. A biological mechanism shared among CDG and CDDG as well as more common neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, is endoplasmic reticulum (ER) stress. We developed isogenic human cellular models of two types of CDG and the only known CDDG to discover drugs that can alleviate ER stress. Systematic phenotyping confirmed ER stress and identified elevated autophagy among other phenotypes in each model. We screened 1049 compounds and scored their ability to correct aberrant morphology in each model using an agnostic cell-painting assay based on >300 cellular features. This primary screen identified multiple compounds able to correct morphological phenotypes. Independent validation shows they also correct cellular phenotypes and alleviate each of the ER stress markers identified in each model. Many of the active compounds are associated with microtubule dynamics, which points to new therapeutic opportunities for both rare and more common disorders presenting with ER stress, such as Alzheimer's disease and amyotrophic lateral sclerosis.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Modelos Biológicos , Sustancias Protectoras/farmacología , Factor de Transcripción Activador 6/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Trastornos Congénitos de Glicosilación/patología , Evaluación Preclínica de Medicamentos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Fenotipo , Reproducibilidad de los Resultados , Proteína 1 de Unión a la X-Box/metabolismo
3.
Science ; 349(6254): 1301-6, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26303961

RESUMEN

The identification of human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem revitalized hopes of developing a universal influenza vaccine. Using a rational design and library approach, we engineered stable HA stem antigens ("mini-HAs") based on an H1 subtype sequence. Our most advanced candidate exhibits structural and bnAb binding properties comparable to those of full-length HA, completely protects mice in lethal heterologous and heterosubtypic challenge models, and reduces fever after sublethal challenge in cynomolgus monkeys. Antibodies elicited by this mini-HA in mice and nonhuman primates bound a wide range of HAs, competed with human bnAbs for HA stem binding, neutralized H5N1 viruses, and mediated antibody-dependent effector activity. These results represent a proof of concept for the design of HA stem mimics that elicit bnAbs against influenza A group 1 viruses.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Ratones , Multimerización de Proteína , Estructura Secundaria de Proteína
4.
PLoS One ; 4(1): e4300, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19172996

RESUMEN

The Whi5 transcriptional repressor is a negative regulator of G1 cell cycle progression in Saccharomyces cerevisiae and is functionally equivalent to the Retinoblastoma (Rb) tumor suppressor protein in mammals. In early G1, Whi5 binds to and inhibits SBF (Swi4/Swi6) transcriptional complexes. At Start, Cln:Cdc28 kinases phosphorylate and inactivate Whi5, causing its dissociation from SBF promoters and nuclear export, allowing activation of SBF transcription and entry into late G1. In an analysis of Whi5 phosphorylation, we found that 10 of the 12 putative CDK phosphorylation sites on Whi5 were occupied in vivo in asynchronously growing cells. In addition, we identified 6 non-CDK Whi5 phosphorylation sites. Whi5 CDK and non-CDK phosphorylation mutants were functional and able to rescue the small cell size of whi5Delta cells. However, the Whi5 CDK mutant with all 12 putative CDK sites changed to alanine causes a dramatic cell cycle phenotype when expressed with a Swi6 CDK phosphorylation mutant. Mutational analysis of Whi5 determined that only four C-terminal CDK sites were necessary and sufficient for Whi5 inactivation when Swi6 CDK sites were also mutated. Although these four Whi5 CDK sites do not wholly determine Whi5 nuclear export, they do impact regulation of cell size. Taken together, these observations begin to dissect the regulatory role of specific phosphorylation sites on Whi5.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Ciclo Celular , Núcleo Celular/metabolismo , Análisis Mutacional de ADN , Carioferinas/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Fosforilación , Transporte de Proteínas , Proteínas Represoras/química , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química
5.
J Biol Chem ; 280(15): 15020-8, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15677478

RESUMEN

ADAR1 (adenosine deaminase acting on RNA) is widely expressed in adult mammals and has a critical role during embryogenesis. Two size forms of ADAR1 are known that possess adenosine-to-inosine editing activity: an interferon (IFN)-inducible approximately 150-kDa protein and a constitutively expressed N-terminally truncated approximately 110-kDa protein. We defined the structure of the 5'-flanking region of the mouse Adar1 gene, and we show here that mouse Adar1 transcripts possess alternative exon 1 structures (1A, 1B, and 1C) that initiate from unique promoters and are spliced to a common exon 2 junction. Exon 1A-containing transcripts encoding p150 were expressed in all tissues examined from adult mice (brain, cecum, heart, kidney, liver, lung, spleen, and Peyer's patches) and were elevated most significantly in liver but remained lowest in brain following oral infection with Salmonella. Exon 1B-containing RNA was most abundant in brain and was not increased in any tissue examined following infection. Exon 1C-containing RNA was very scarce. Exon 1A, but not exon 1B or 1C, expression was increased in fibroblast L cells treated with IFN, and a consensus ISRE element was present in the promoter driving exon 1A expression. Exon 1B, but not 1A, was detectable in embryonic day 10.5 embryos and was abundantly expressed in embryonic day 15 embryos. Furthermore, the ADAR1 p110 protein isoform was detected in embryonic tissue, whereas both p110 and the inducible p150 proteins were found in IFN-treated L cells. Finally, the presence of alternative exon 7a correlated with exon 1B-containing RNA, and alternative exon 7b correlated with exon 1A-containing RNA. These results establish that multiple promoters drive the expression of the Adar1 gene in adult mice, that the IFN inducible promoter and exon 1A-containing RNA are primarily responsible for the increased ADAR1 observed in Salmonella-infected mice, and that the constitutive exon 1B-containing transcript and encoded p110 protein product are abundantly expressed both in adult brain and during embryogenesis.


Asunto(s)
Adenosina Desaminasa/biosíntesis , Adenosina Desaminasa/química , Empalme Alternativo , Embrión de Mamíferos/microbiología , Interferones/metabolismo , Regiones Promotoras Genéticas , ARN/química , Adenosina/química , Animales , Secuencia de Bases , Northern Blotting , Southern Blotting , Encéfalo/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos , Exones , Fibroblastos/metabolismo , Inosina/química , Ratones , Ratones Endogámicos BALB C , Modelos Genéticos , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Plásmidos/metabolismo , Isoformas de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salmonella/metabolismo , Homología de Secuencia de Ácido Nucleico , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...