Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 81(6): 152, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652305

RESUMEN

Spirulina (Arthrospira and Spirulina spp.) has always been characterized by the helical trichomes, despite the existence of linear forms. A great debate is now open on the morphological flexibility of Spirulina, but it seems that both trichome morphology and C-phycocyanin (C-PC) concentrations are influenced by the culture conditions.This work compared the effect of some key growth factors (medium pH as well as its carbon, potassium, and salt contents) on the growth and C-PC concentration of helical and linear Spirulina strains. Further, two-phase strategies, including light and nitrogen variation, were applied to increase the in vivo C-PC accumulation into the trichomes. Results showed that high pH induced trichomes elongation and improved growth but decreased C-PC content (+ 65 and + 43% vs. -83 and -49%, for helical and linear strains, respectively). Variations in carbon and salt concentrations negatively impacted growth and C-PC content, even if the linear strain was more robust against these fluctuations. It was also interesting to see that potassium increasing improved growth and C-PC content for both strains.The variation of light wavelength during the enrichment phase (in the two-phase strategy) improved by 50% C-PC accumulation in trichomes, especially after blue lighting for 96 h. Similar result was obtained after 48 h of nitrogen reduction, while its removal from the medium caused trichomes disintegration. The current work highlights the robustness of linear Spirulina strain and presents an efficient and scalable way to increase C-PC in vivo without affecting growth.


Asunto(s)
Carbono , Medios de Cultivo , Ficocianina , Spirulina , Spirulina/crecimiento & desarrollo , Spirulina/metabolismo , Spirulina/química , Ficocianina/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Carbono/metabolismo , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo , Luz , Potasio/metabolismo
2.
Appl Biochem Biotechnol ; 196(3): 1255-1271, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37382791

RESUMEN

Chlorella and Spirulina are the most used microalgae mainly as powder, tablets, or capsules. However, the recent change in lifestyle of modern society encouraged the emergence of liquid food supplements. The current work evaluated the efficiency of several hydrolysis methods (ultrasound-assisted hydrolysis UAH, acid hydrolysis AH, autoclave-assisted hydrolysis AAH, and enzymatic hydrolysis EH) in order to develop liquid dietary supplements from Chlorella and Spirulina biomasses. Results showed that, EH gave the highest proteins content (78% and 31% for Spirulina and Chlorella, respectively) and also increased pigments content (4.5 mg/mL of phycocyanin and 12 µg/mL of carotenoids). Hydrolysates obtained with EH showed the highest scavenging activity (95-91%), allowing us, with the other above features, to propose this method as convenient for liquid food supplements development. Nevertheless, it has been shown that the choice of hydrolysis method depended on the vocation of the product to be prepared.


Asunto(s)
Chlorella , Microalgas , Spirulina , Chlorella/metabolismo , Spirulina/metabolismo , Suplementos Dietéticos , Carotenoides/metabolismo , Ficocianina , Microalgas/metabolismo
3.
Chem Commun (Camb) ; 47(24): 6840-2, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21594294

RESUMEN

Although metal-organic framework (MOF) materials have been postulated as superior to any other sorbent for CO(2) adsorption at room temperature, here we prove that the appropriate selection of the raw material and the synthesis conditions allows the preparation of carbon molecular sieves (CMSs) with adsorption capacity, on a volumetric basis, highly exceeding those reported in the literature for MOFs. Furthermore, the excellent sorption properties of CMSs over the whole pressure range (up to 50 bar) are fully reversible after different adsorption/desorption cycles.

4.
ChemSusChem ; 3(8): 974-81, 2010 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-20586092

RESUMEN

A series of carbon molecular sieves (CMSs) has been prepared, either as powders or monoliths, from petroleum pitch using potassium hydroxide as the activating agent. The CMS monoliths are prepared without the use of a binder based on the self-sintering ability of the mesophase pitch. Characterization results show that these CMSs combine a large apparent surface area (up to ca. 3100 m(2) g(-1)) together with a well-developed narrow microporosity (V(n) up to ca. 1.4 cm(3) g(-1)). The materials exhibit high adsorption capacities for CO(2) at 1 bar and 273 K (up to ca. 380 mg CO(2) g sorbent(-1)). To our knowledge, this is the best result obtained for CO(2) adsorption using carbon-based materials. Furthermore, although the CO(2) adsorption capacity for activated carbons has usually been considered lower than that of zeolites, the reported values exceed the total amount adsorbed on traditional 13X and 5A zeolites (ca. 230 mg and 180 mg CO(2) g sorbent(-1), respectively), under identical experimental conditions. Additionally, the narrow pore openings found in the CMS samples (ca. 0.4 nm) allows for the selective adsorption of CO(2) from molecules of similar dimensions (e.g., CH(4) and N(2)).


Asunto(s)
Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Secuestro de Carbono , Adsorción , Cinética , Metano/química , Nitrógeno/química , Porosidad , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA