Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytother Res ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38986681

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with an unknown underlying cause. There is no complete cure for IPF; however, two anti-fibrotic agents (Nintedanib and pirfenidone) are approved by the USFDA to extend the patient's life span. Therefore, alternative therapies supporting the survival of fibrotic patients have been studied in recent literature. The abundance of phenolic compounds, particularly flavonoids, has gathered attention due to their potential health benefits. Various flavonoids, like naringin, quercetin, baicalin, baicalein, puerarin, silymarin, and kaempferol, exhibit anti-inflammatory and anti-oxidant properties, which help decrease lung fibrosis. Various databases, including PubMed, EBSCO, ProQuest, and Scopus, as well as particular websites, such as the World Health Organisation and the National Institutes of Health, were used to conduct a literature search. Several mechanisms of action of flavonoids are reported with the help of in vivo and cell line studies emphasizing their ability to modulate oxidative stress, inflammation, and fibrotic processes in the lungs. They are reported for the restoration of biomarkers like hydroxyproline, cytokines, superoxide dismutase, malondialdehyde and others associated with IPF and for modulating various pathways responsible for the progression of pulmonary fibrosis. Yet, flavonoids have some drawbacks, such as poor solubility, challenging drug loading, stability issues, and scarce bioavailability. Therefore, novel formulations of flavonoids are explored, including liposomes, solid lipid microparticles, polymeric nanoparticles, nanogels, and nanocrystals, to enhance the therapeutic efficacy of flavonoids in pulmonary fibrosis. This review focuses on the role of flavonoids in mitigating idiopathic pulmonary fibrosis, their mode of action and novel formulations.

2.
AAPS PharmSciTech ; 25(6): 150, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954161

RESUMEN

Nintedanib, a primary treatment for lung fibrosis, has gathered substantial attention due to its multifaceted potential. A tyrosine kinase inhibitor, nintedanib, inhibits multiple signalling receptors, including endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR) and ultimately inhibits fibroblast proliferation and differentiation. Therefore, nintedanib has been studied widely for other ailments like cancers and hepatic fibrosis, apart from lung disorders. Commercially, nintedanib is available as soft gelatin capsules for treatment against idiopathic pulmonary fibrosis. Since it has very low oral bioavailability (4.7%), high doses of a drug, such as 100-150 mg, are administered, which can cause problems of gastrointestinal irritation and hepatotoxicity. The article begins with exploring the mechanism of action of nintedanib, elucidating its complex interactions within cellular pathways that govern fibrotic processes. It also emphasizes the pharmacokinetics of nintedanib, clinical trial insights, and the limitations of conventional formulations. The article mainly focuses on the emerging landscape of nanoparticle-based carriers such as hybrid liposome-exosome, nano liquid crystals, discoidal polymeric, and magnetic systems, offering promising avenues to optimize drug targeting, address its efficacy issues and minimise adverse effects. However, none of these delivery systems are commercialised, and further research is required to ensure safety and effectiveness in clinical settings. Yet, as research progresses, these advanced delivery systems promise to revolutionise the treatment landscape for various fibrotic disorders and cancers, potentially improving patient outcomes and quality of life.


Asunto(s)
Sistemas de Liberación de Medicamentos , Indoles , Humanos , Indoles/administración & dosificación , Indoles/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Animales , Enfermedades Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo
3.
Ann Pharm Fr ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942078

RESUMEN

OBJECTIVES: Edaravone (EDR) is an effective neuroprotective agent in various neurological diseases; however, its use is restricted due to poor oral absorption. Bile salts are known for improving solubility and inhibiting drug crystallization in supersaturated conditions of the gastrointestinal tract (GIT). In our previous work, we prepared coamorphous dispersion (COAM) of EDR with sodium taurocholate (NaTC) using spray drying. The optimized EDR COAM exhibited superior in vitro performance compared to plain EDR. EDR is well absorbed in fasted-over-fed conditions. METHODS: The present work, we conducted a pharmacokinetic study for EDR and EDR COAM in fasted and fed conditions to check effect of food on its oral absorption. The LC-MS/MS-based method was developed and validated to determine the amount of EDR in plasma. RESULTS: The results suggested that EDR COAM did not show a significant difference in Cmax (P=0.3544) and AUC (P=0.1696) of fasted and fed states. On the other hand, plain EDR showed 2-fold and 3-fold reduced Cmax (P<0.0001) and AUC (P=0.0094) in the fed condition, respectively. The Cmax and AUC of EDR COAM were improved in fasted (AUC: 2.56-fold) and fed states (AUC: 5.74-fold) than plain EDR, suggesting better oral absorption of COAM than crystalline EDR without having the effect of food. CONCLUSIONS: The unique structural attributes of NaTC had the potential to inhibit the recrystallization of EDR in GIT, while concurrently reducing the impact of food on the oral absorption of EDR.

4.
Brain Res ; 1834: 148905, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565372

RESUMEN

Alzheimer's disease (AD) is a primary cause of dementia that affects millions of people worldwide and its prevalence is likely to increase largely in the coming decades. Multiple complex pathways, such as oxidative stress, tau and amyloid-beta (Aß) pathology, and cholinergic dysfunction, are involved in the pathogenesis of Alzheimer's disease. The conventional treatments provide only symptomatic relief and not a complete cure for the disease. On the other hand, recent studies have looked into the possibility of flavonoids as an effective therapeutic strategy for treating AD. Quercetin, a well-known flavonol, has been extensively studied for AD treatment. Therefore, this review mainly focuses on the pharmacokinetics properties of quercetin and its modes of action, such as antioxidant, anti-inflammatory, anti-amyloidogenic, and neuroprotective properties, which are beneficial in treating AD. It also highlights the nano delivery systems of quercetin, including liposomes, nanostructures lipid carriers, solid lipid nanoparticles, nanoemulsions, microemulsions, self-emulsifying drug delivery systems, and nanoparticles reported for AD treatment. The remarkable potential of quercetin nanocarriers has been reflected in enhancing its bioavailability and therapeutic efficacy. Therefore, clinical studies must be conducted to explore it as a therapeutic strategy for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Antioxidantes , Fármacos Neuroprotectores , Quercetina , Quercetina/administración & dosificación , Quercetina/farmacocinética , Quercetina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas
5.
AAPS PharmSciTech ; 25(4): 78, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589751

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease that has been well-reported in the medical literature. Its incidence has risen, particularly in light of the recent COVID-19 pandemic. Conventionally, IPF is treated with antifibrotic drugs-pirfenidone and nintedanib-along with other drugs for symptomatic treatments, including corticosteroids, immunosuppressants, and bronchodilators based on individual requirements. Several drugs and biologicals such as fluorofenidone, thymoquinone, amikacin, paclitaxel nifuroxazide, STAT3, and siRNA have recently been evaluated for IPF treatment that reduces collagen formation and cell proliferation in the lung. There has been a great deal of research into various treatment options for pulmonary fibrosis using advanced delivery systems such as liposomal-based nanocarriers, chitosan nanoparticles, PLGA nanoparticles, solid lipid nanocarriers, and other nanoformulations such as metal nanoparticles, nanocrystals, cubosomes, magnetic nanospheres, and polymeric micelles. Several clinical trials are also ongoing for advanced IPF treatments. This article elaborates on the pathophysiology of IPF, its risk factors, and different advanced drug delivery systems for treating IPF. Although extensive preclinical data is available for these delivery systems, the clinical performance and scale-up studies would decide their commercial translation.


Asunto(s)
Fibrosis Pulmonar Idiopática , Nanopartículas , Humanos , Pandemias , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/inducido químicamente , Pulmón , Sistemas de Liberación de Medicamentos , Piridonas/uso terapéutico
6.
AAPS PharmSciTech ; 25(2): 29, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302633

RESUMEN

Progesterone, a female sex steroid hormone, is highly lipophilic, leading to poor oral bioavailability. This study aimed to develop a progesterone bilosome system to enhance its oral bioavailability and retain it longer in the body. Progesterone vesicles were formulated with bile salts by thin film hydration method to prevent enzymatic and bile acid degradation. The Box-Behnken experimental design was used to statistically optimize progesterone bilosomes by checking the effect of phosphatidylcholine, cholesterol, and sodium deoxycholate on vesicle size, zeta potential, and entrapment efficiency. The optimum batch showed 239.5 nm vesicle size, -28.2 mV zeta potential and 84.08% entrapment efficiency, respectively, which were significantly affected by phosphatidylcholine and cholesterol concentration. The successful incorporation of progesterone in the system was evident from ATR-FTIR analysis that revealed no sharp progesterone peaks in bilosomes. TEM analysis confirmed the spherical structure and uniform bilosome vesicles. Furthermore, the in vitro drug release of progesterone bilosomes revealed a sustained pattern exhibiting 90% drug release in 48 h. The pharmacokinetic study in female ovariectomized Wistar rats confirmed the 4.287- and 9.75-fold enhanced oral bioavailability of the progesterone bilosomes than marketed capsules and progesterone API, respectively. Therefore, progesterone bilosome formulation can be further explored for improved oral administration in chronic treatments.


Asunto(s)
Liposomas , Progesterona , Ratas , Animales , Femenino , Liposomas/química , Ratas Wistar , Disponibilidad Biológica , Administración Oral , Colesterol/química , Fosfatidilcolinas , Tamaño de la Partícula
7.
Int J Biol Macromol ; 254(Pt 1): 127622, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37890752

RESUMEN

The study aimed to develop a biopolymer-based mupirocin film-forming spray (MUP-FFS) for wound healing using chitosan and α-cellulose. MUP-FFS formulation was optimized by box-Behnken design, wherein the amount of chitosan, glycerol, and microfluidizer cycles showed a significant effect on the drying time and sprayability, but drug release remained unaffected. The optimized MUP-FFS formulation prepared by 13 microfluidizer cycles containing chitosan (0.125 %), glycerol (2.76 %) was quickly sprayable with 235 s drying time. The viscosity, spray uniformity and occlusive potential were found optimum for MUP-FFS. MUP-FFS released 98.066 % of MUP, 2-fold and 4-fold greater than the marketed ointment and MUP-API. The transmission electron microscopy displayed a homogeneous fibrous network, and scanning electron microphotographs showed uniform drug distribution on the MUP-film surface. The antimicrobial study revealed the efficacy of MUP-FFS against S.aureus and E.coli, wherein the former was more susceptible to formulation than the later. MUP-FFS indicated better wound contraction and healing than other groups on 7th and 14th day in rats. On Day-21, MUP-FFS could regress TGF-ß1 to a normal level similar to the marketed formulation, which was also reflected in histopathological observations. Therefore, MUP-FFS can be a treatment option for chronic wounds, applied without touch and with minimal mechanical pressure.


Asunto(s)
Antiinfecciosos , Quitosano , Ratas , Animales , Mupirocina/farmacología , Antibacterianos/farmacología , Quitosano/farmacología , Glicerol/farmacología , Antiinfecciosos/farmacología , Cicatrización de Heridas , Celulosa/farmacología , Staphylococcus aureus
8.
Pharm Dev Technol ; 28(10): 1048-1055, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987762

RESUMEN

This research aimed to evaluate the effect of variables on exemestane-loaded bovine serum albumin nanoparticles (EXE-BSA NPs) to improve anti-breast cancer activity. EXE-BSA NPs were optimized using 32 factorial design, wherein the concentration of BSA (X1) and sonication time (X2) were independent variables and particle size (Y1) and %w/w entrapment efficiency (Y2) were dependent variables. The statistical optimization revealed a significant effect of BSA concentration on both variables, whereas sonication time affected only particle size. The optimized EXE-BSA NPs were spherical with 124.1 ± 2.62 nm particle size, 83.95 ± 1.06% w/w drug entrapment, and exhibited a biphasic release of 100% (w/w) drug over 72 h. The optimized formulation induced cytotoxicity in MCF-7 cell lines with an IC50 value of 21.46 µg/mL by MTT assay, almost half the free drug (54.87 µg/mL). Thus, statistically optimized EXE-BSA NPs were effective in MCF-7 cell lines and can be explored to treat estrogen receptor-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Células MCF-7 , Portadores de Fármacos , Albúmina Sérica Bovina , Neoplasias de la Mama/tratamiento farmacológico , Tamaño de la Partícula
9.
Tissue Cell ; 85: 102225, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801960

RESUMEN

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood glucose and is associated with high morbidity and mortality among the diabetic population. Uncontrolled chronic hyperglycaemia causes increased formation and accumulation of different oxidative and nitrosative stress markers, resulting in microvascular and macrovascular complications, which might seriously affect the quality of a patient's life. Conventional treatment strategies are confined to controlling blood glucose by regulating the insulin level and are not involved in attenuating the life-threatening complications of diabetes mellitus. Thus, there is an unmet need to develop a viable treatment strategy that could target the multi-etiological factors involved in the pathogenesis of diabetic complications. Stem cell therapy, a regenerative medicine approach, has been investigated in diabetic complications owing to their unique characteristic features of self-renewal, multilineage differentiation and regeneration potential. The present review is focused on potential therapeutic applications of stem cells in the treatment of microvascular diabetic complications such as nephropathy, retinopathy, and polyneuropathy.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Hiperglucemia , Humanos , Glucemia/metabolismo , Medicina Regenerativa , Complicaciones de la Diabetes/terapia , Hiperglucemia/complicaciones , Hiperglucemia/terapia , Células Madre/metabolismo , Diabetes Mellitus/terapia
10.
Int J Pharm ; 644: 123322, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37591474

RESUMEN

Nintedanib (NIN) is one of the FDA-approved tyrosine kinase inhibitor drugs used to treat idiopathic pulmonary fibrosis (IPF). This study aimed to formulate a long-circulating injection of Nintedanib to treat bedridden patients with IPF. Nintedanib was incorporated into chitosan nanoparticles (NIN-NP) via the ionic gelation method, and N-acetyl cysteine (NAC), a known antioxidant and mucolytic agent, was added to the NIN-NP (NAC-NIN-NP). The lyophilized formulation had a particle size of 174 nm, a polydispersity index of 0.511, and a zeta potential of 18.6 mV. The spherical nanoparticles were observed in transmission electron microscopy, whereas field emission scanning electron microscopy showed irregular clusters of NP. The thiolation of the chitosan in NAC-NIN-NP was confirmed by ATR-FTIR and NMR, which improved drug release profiles showing >90 % drug release that was 2.42-folds greater than NIN-NP lasting for five days. The DPPH assay showed that adding NAC increased the % inhibition of oxidation in blank-NP (from 54.59 % to 87.17 %) and NIN-NP (58.65 %-89.19 %). The MTT assay on A549 cells showed 67.57 % cell viability by NAC-NIN-NP with an IC50 value of 28 µg/mL. The NAC formulation reduced hydroxyproline content (56.77 µg/mL) compared to NIN-NP (69.48 µg/mL) in WI-38 cell lines. Meanwhile, the healthy cells count with NAC-NIN-NP was higher (5.104 × 103) than with NIN-NP (4.878 × 103). In Hoechst staining, no significant damage to DNA was observed by the drug or formulation. Therefore, NAC-NIN-NP could be a promising treatment option for IPF patients and can be studied further clinically.


Asunto(s)
Fibrosis Pulmonar Idiopática , Nanopartículas , Quitosano/química , Acetilcisteína/química , Compuestos de Sulfhidrilo/química , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Tamaño de la Partícula , Humanos , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química
11.
Int J Pharm ; 643: 123250, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37481096

RESUMEN

Progesterone is a natural steroidal sex hormone in the human body, mainly secreted through the adrenal cortex, ovary, and placenta. In humans, progesterone is essential for endometrium transformation in the uterus at the time of ovulation and maintenance of pregnancy. When the body cannot produce enough progesterone for specific ailments, it is administered via different routes such as oral, vaginal, transdermal, topical, parental, and intranasal routes. Although progesterone is commercially available in multiple conventional formulations, low solubility, less permeability and extensive hepatic first-pass metabolism are the major constraints to its delivery. These challenges can be overcome substantially by formulating progesterone into novel delivery systems like lipid carriers, polymeric carriers, hydrogels, several nanocarriers, depot and controlled release systems. Various research papers and patents have been published in the last two decades on progesterone delivery systems; clinical studies were conducted to establish safety and efficacy. This review is focused on the pharmacodynamic and pharmacokinetic parameters of progesterone, its delivery constraints, and various advanced delivery systems of progesterone.


Asunto(s)
Progesterona , Útero , Embarazo , Femenino , Humanos , Esteroides , Endometrio , Vagina
12.
Chem Phys Lipids ; 253: 105302, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37031754

RESUMEN

In the present study, we aimed to design the spray-dried coamorphous dispersion (COAM) of a neuroprotective agent-edaravone (EDR) with bile salts to improve oral bioavailability. After the initial screening of different bile salts, EDR-sodium taurocholate (NaTC) COAM showed 4-fold solubility than a pure drug in 1-7 pH range. In silico studies to select coformer for COAM revealed a narrow energy gap, easy charge transfer and high chemical reactivity between EDR and NaTC. The optimized EDR-NaTC COAM in a 1:1 molar ratio was characterized for solid state characterizations and in vitro release study. Hydrogen bond formation between the pyrazolone ring of EDR and the -OH group of the phenanthrene ring of NaTC was observed in the ATR-FTIR spectra of COAM. The DSC and XRPD data indicated the formation of an amorphous halo, whereas SEM photographs demonstrated porous, spherical particles of COAM. The pH-independent in vitro drug release of COAM was observed in 0.1 N HCl, pH 4.5 and 6.8 buffers which was 3-fold higher than EDR. The COAM was stable for 6 months at accelerated condition without showing a change in drug content or devitrification (Initial: 98.002 ± 0.942 %; Accelerated condition: 97.016 ± 1.110 %). Although coamorphous form and hydrogen bonding between EDR-NaTC dispersion were primarily responsible for improved dissolution, NaTC, an exceptional surfactant, has also contributed to it. Moreover, its exclusive structural characteristics could prevent the recrystallization of the drug in supersaturated conditions of the GIT and also minimize the effect of food on oral absorption of EDR which will be studied in animals in the second part of this work.


Asunto(s)
Ácidos y Sales Biliares , Animales , Edaravona , Fenómenos Químicos , Solubilidad , Liberación de Fármacos
13.
Drug Deliv Transl Res ; 13(1): 18-36, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35637334

RESUMEN

Diabetes is a chronic metabolic disease characterized by an excess of glucose in the blood. If the constant sugar level is not managed correctly in diabetic patients, it may lead to microvascular complications such as diabetic retinopathy, neuropathy, and nephropathy. There are several synthetic drugs for the management of diabetes; however, these drugs produce immense adverse effects in long-term use. Flavonoids are naturally occurring substances categorized in various classes. They are known for their diverse pharmacological actions, and one of them is prominent antihyperglycemic action and their activities in diabetic complications. In the last few decades, many research studies emphasized the potential of flavonoids in diabetes management. Nevertheless, most flavonoids are insoluble in water and cannot produce desired therapeutic action when administered in conventional dosage forms. To overcome this issue, flavonoids were formulated into different nanoformulations to enhance solubility, absorption, and therapeutic efficacy. This review article focuses on flavonoid nanoformulations and in vitro and in vivo studies reported to overcome diabetes mellitus and its complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Humanos , Flavonoides/uso terapéutico , Proyectos de Investigación , Diabetes Mellitus/tratamiento farmacológico
14.
Drug Deliv Transl Res ; 13(2): 419-432, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35994158

RESUMEN

Osteoporosis is a bone disorder characterised by low bone mineral density, reduced bone strength, increased bone fragility, and impaired mineralisation of bones causing an increased risk of bone fracture. Several therapies are available for treating osteoporosis which include bisphosphonates, anti-resorptive agents, oestrogen modulators, etc. These therapies primarily focus on decreasing bone resorption and do not assist in bone regeneration or offering permanent curative solutions. Additionally, these therapies are associated with severe adverse events like thromboembolism, increased risk of stroke, and hypocalcaemia. To overcome these limitations, bone regenerative pathways and approaches are now considered to manage osteoporosis. The bone regenerative pathways involved in bone regeneration include wingless-related integration site/ß-catenin signalling pathway, notch signalling pathway, calcium signalling, etc. The various regenerative approaches which possess potential to heal and replace the bone defect site include scaffolds, cements, cell therapy, and other alternative medicines. The review focuses on describing the challenges and opportunities in bone regeneration for osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea , Osteoporosis , Humanos , Conservadores de la Densidad Ósea/uso terapéutico , Densidad Ósea , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Regeneración Ósea , Difosfonatos/uso terapéutico
15.
AAPS PharmSciTech ; 24(1): 27, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577896

RESUMEN

The current study aimed to improve the processability and oral bioavailability of itraconazole (ITZ) via spherical agglomeration. ITZ-spherical agglomerates (ITZ-SA) and ITZ-poloxamer 407-spherical agglomerates (ITZ-PLX-SA) were optimized using Box-Behnken design. Here, the drug release was affected by polymer concentration and stirring speed, whereas particle size was altered by stirring speed, polymer concentration, and amount of bridging liquid. Heckel and Kawakita studies showed a reduction in mean yield pressure and remarkably lowered 1/b value than ITZ, indicating better compactibility and flowability of ITZ-PLX-SA. Physicochemical interactions were not observed during the process, as indicated by ATR-FTIR, DSC, and XRPD. The significant improvement in % drug release of ITZ-PLX-SA was attributed to better wettability and the presence of polymer than ITZ-SA and ITZ. The pharmacokinetic study in rats indicated fivefold enhanced Cmax and twofold improved AUC for ITZ-PLX-SA than plain drug. Thus, spherical agglomeration could improve overall processability and pharmacokinetic profile of ITZ.


Asunto(s)
Itraconazol , Poloxámero , Ratas , Animales , Itraconazol/farmacocinética , Disponibilidad Biológica , Polímeros , Liberación de Fármacos , Tamaño de la Partícula , Antifúngicos/farmacocinética
16.
Biomater Adv ; 142: 213152, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36270159

RESUMEN

Collagen is a biopolymer found in the animal body. It is one of the most abundant proteins in the extracellular matrix that provides strength to the skin, joints, and bones in the human body. It is an important source of elasticity and strength in the extracellular matrix and contributes to the structural and physiological integrity of tissues. Collagen plays an important role in regulating the wound healing process. It helps in wound healing by attracting fibroblasts and encouraging new collagen formation in the wound bed. Therefore, it can be used as a supplementary aid for wound treatment to accelerate the healing process. A prominent benefit of incorporating collagen in wound dressings is its ability to enhance the healing process for critical wounds. Not only collagen but various collagen-containing systems are being prepared to boost its efficacy in wound healing. Different strategies like nanoscale reductions, biopolymers, and incorporating anti-inflammatory and antimicrobial drugs with collagen have been reported. This review article emphasizes the use of collagen for wound healing and various collagen fabricated delivery systems such as nanofibres, nanoparticles, hydrogels, films, and sponges that aid in the healing of wounds.


Asunto(s)
Colágeno , Cicatrización de Heridas , Animales , Humanos , Colágeno/química , Vendajes , Piel/lesiones , Hidrogeles/uso terapéutico , Biopolímeros/metabolismo
17.
Colloids Surf B Biointerfaces ; 219: 112803, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36084510

RESUMEN

Cell membrane cloaking is an important biomimetic approach for improving drug residence time in the body due to its distinctive concealment ability, making it highly biocompatible and efficient for targeted drug delivery. Leukocytes are considered a fundamental part of the immune system. Leukocyte membrane cloaked nanoparticles offer site-specificity and can escape the opsonization process besides enhanced systemic circulation time. This review emphasizes the anatomical and physiological features of different leukocytes in addition to the preparation and characterization of leukocyte membrane cloaked nanoparticles. It also covers the recent advancements of this biointerfacing platform in cancer therapy, inflammatory disorders, multifunctional targeted therapy and hybrid membrane-coated nanoparticles. However, leukocytes are complex, nucleated cell structures and isolating their membranes poses a greater difficulty. Leukocyte membrane cloaking is an upcoming strategy in the infancy stage; nevertheless, there is immense scope to explore this biomimetic delivery system in terms of clinical transition, particularly for inflammatory diseases and cancer.


Asunto(s)
Materiales Biomiméticos , Nanopartículas , Neoplasias , Humanos , Biomimética , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/química , Membrana Celular/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Leucocitos
18.
Drug Discov Today ; 27(12): 103371, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36174965

RESUMEN

Biotechnology-based therapeutics include a wide range of products, such as recombinant hormones, stem cells, therapeutic enzymes, monoclonal antibodies, genes, vaccines, among others. The administration of these macromolecules has been studied via various routes. The nasal route is one of the promising routes of administration for biotechnology products owing to its easy delivery, the rich vascularity of the nasal mucosa, high absorption and targeted action. Several preclinical studies have been reported for nasal delivery of these products and many are at the clinical stage. This review focuses on biotechnology-based therapeutics administered via the intranasal route for treating various diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos , Vacunas , Administración Intranasal , Mucosa Nasal , Biotecnología
19.
Int J Pharm ; 623: 121926, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35716974

RESUMEN

In this study, raloxifene hydrochloride (RLX) was loaded into bovine serum albumin nanoparticles (RLX-BSA-NPs) and further surface modified with folic acid (FA-RLX-BSA-NPs) for targeted breast cancer therapy. In statistical optimization of RLX-BSA-NPs, albumin and crosslinker concentration significantly affected particle size and entrapment efficiency of RLX-BSA-NPs. Structural characterizations confirmed that the formation of FA-RLX-BSA-NPs and SEM microphotographs resembled the urchin-like spiky feature. A sustained in vitro release pattern was observed till 120 h from FA-RLX-BSA-NPs in phosphate buffer. The MTT assay revealed maximum cell inhibition by FA-RLX-BSA-NPs against MCF-7 cells and MDA MB-231 cells at lower IC50 values (0.5 µg/ml and 0.7 µg/ml) compared to RLX and RLX-BSA-NPs. The cell cycle analysis revealed that FA-RLX-BSA-NPs induced apoptosis of MCF-7 cells in the sub-G1 phase via folate receptor-α mediated endocytic uptake. Hence, the raloxifene nanoparticles stance as a potential nanocarrier for targeted therapy in breast cancer.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Portadores de Fármacos/química , Femenino , Ácido Fólico/química , Humanos , Nanopartículas/química , Tamaño de la Partícula , Clorhidrato de Raloxifeno/farmacología , Albúmina Sérica Bovina/química
20.
J Control Release ; 346: 71-97, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35439581

RESUMEN

The idea of employing natural cell membranes as a coating medium for nanoparticles (NPs) endows man-made vectors with natural capabilities and benefits. In addition to retaining the physicochemical characteristics of the NPs, the biomimetic NPs also have the functionality of source cell membranes. It has emerged as a promising approach to enhancing the properties of NPs for drug delivery, immune evasion, imaging, cancer-targeting, and phototherapy sensitivity. Several studies have been reported with a multitude of approaches to reengineering the surface of NPs using biological membranes. Owing to their low immunogenicity and intriguing biomimetic properties, cell-membrane-based biohybrid delivery systems have recently gained a lot of interest as therapeutic delivery systems. This review summarises different kinds of biomimetic NPs reported so far, their fabrication aspects, and their application in the biomedical field. Finally, it briefs on the latest advances available in this biohybrid concept.


Asunto(s)
Nanopartículas , Neoplasias , Membrana Celular/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA