Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(24): 6392-6397, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38860919

RESUMEN

Using electron spin resonance (ESR) spectroscopy, we investigated the effects of the addition of tin (Sn) powder to perovskite layers on band bending at the perovskite surface near poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole-transport layers in perovskite solar cells (PSCs) involving formamidinium (FA)-methylammonium (MA)-mixed-cation I-Br-mixed-halide tin perovskites. We performed dark ESR spectroscopy measurements of a PEDOT:PSS/FA0.75MA0.25Sn(I0.75Br0.25)3 stack and of a PEDOT:PSS/Sn-powder-added FA0.75MA0.25Sn(I0.75Br0.25)3 stack. The results indicate that FA0.75MA0.25Sn(I0.75Br0.25)3 layers have significant downward band bending near PEDOT:PSS layers. Such downward band bending is unfavorable for hole selectivity and surface passivation at the interface. However, the addition of Sn powder to the tin perovskite precursor solution was found to significantly prevent the downward band bending and rather cause upward band bending, which can improve the hole selectivity and field-effect passivation quality. This can be due to prevented oxidation of perovskite layers by Sn powder addition. These findings are crucial for developing highly efficient and stable tin perovskite solar cells.

2.
Chem Rev ; 124(7): 4079-4123, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38527274

RESUMEN

All-perovskite tandem solar cells are attracting considerable interest in photovoltaics research, owing to their potential to surpass the theoretical efficiency limit of single-junction cells, in a cost-effective sustainable manner. Thanks to the bandgap-bowing effect, mixed tin-lead (Sn-Pb) perovskites possess a close to ideal narrow bandgap for constructing tandem cells, matched with wide-bandgap neat lead-based counterparts. The performance of all-perovskite tandems, however, has yet to reach its efficiency potential. One of the main obstacles that need to be overcome is the─oftentimes─low quality of the mixed Sn-Pb perovskite films, largely caused by the facile oxidation of Sn(II) to Sn(IV), as well as the difficult-to-control film crystallization dynamics. Additional detrimental imperfections are introduced in the perovskite thin film, particularly at its vulnerable surfaces, including the top and bottom interfaces as well as the grain boundaries. Due to these issues, the resultant device performance is distinctly far lower than their theoretically achievable maximum efficiency. Robust modifications and improvements to the surfaces of mixed Sn-Pb perovskite films are therefore critical for the advancement of the field. This Review describes the origins of imperfections in thin films and covers efforts made so far toward reaching a better understanding of mixed Sn-Pb perovskites, in particular with respect to surface modifications that improved the efficiency and stability of the narrow bandgap solar cells. In addition, we also outline the important issues of integrating the narrow bandgap subcells for achieving reliable and efficient all-perovskite double- and multi-junction tandems. Future work should focus on the characterization and visualization of the specific surface defects, as well as tracking their evolution under different external stimuli, guiding in turn the processing for efficient and stable single-junction and tandem solar cell devices.

3.
Chem Commun (Camb) ; 60(16): 2172-2175, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38315560

RESUMEN

An open-cage bis[60]fulleroid (OC) was applied as an electron transport material (ETM) in tin (Sn) halide perovskite solar cells (PSCs). Due to the reduced offset between the energy levels of Sn-based perovskites and ETMs, the power conversion efficiency (PCE) of Sn-based PSCs with OC reached 9.6% with an open-circuit voltage (VOC) of 0.72 V. Additionally, OC exhibited superior thermal stability and provided 75% of the material without decomposition after vacuum deposition. The PSC using vacuum-deposited OC as the ETM could afford a PCE of 7.6%, which is a big leap forward compared with previous results using vacuum-deposited fullerene derivatives as ETMs.

4.
ACS Appl Mater Interfaces ; 16(1): 1206-1216, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117238

RESUMEN

A novel 9,9'-spirobifluorene derivative bearing thermally cross-linkable vinyl groups (V1382) was developed as a hole-transporting material for perovskite solar cells (PSCs). After thermal cross-linking, a smooth and solvent-resistant three-dimensional (3D) polymeric network is formed such that orthogonal solvents are no longer needed to process subsequent layers. Copolymerizing V1382 with 4,4'-thiobisbenzenethiol (dithiol) lowers the cross-linking temperature to 103 °C via the facile thiol-ene "click" reaction. The effectiveness of the cross-linked V1382/dithiol was demonstrated both as a hole-transporting material in p-i-n and as an interlayer between the perovskite and the hole-transporting layer in n-i-p PSC devices. Both devices exhibit better power conversion efficiencies and operational stability than devices using conventional PTAA or Spiro-OMeTAD hole-transporting materials.

5.
ACS Appl Mater Interfaces ; 15(50): 58539-58547, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055892

RESUMEN

Organic-inorganic hybrid perovskite solar cells have attracted much attention as important next-generation solar cells. Their solar cell performance is known to change during operation, but the root cause of the instability remains unclear. This report describes an investigation using electron spin resonance (ESR) to evaluate an improvement mechanism for the open-circuit voltage, VOC, of inverted perovskite solar cells at the initial stage of device operation. The ESR study revealed electron transfer at the interface from the perovskite layer to the hole-transport layer not only under dark conditions but also under light irradiation, where electrons are subsequently trapped in the hole-transport layer. An electron barrier is enhanced at the perovskite/hole-transport-layer interface, improving field-effect passivation at the interface. Thereby, the interface recombination velocity is reduced, and thus the VOC improves. These findings are crucially important for elucidating the mechanisms of device performance changes under operation. They reveal a relation between charge transfer and performance improvement, which is valuable for the further development of efficient perovskite solar cells.

6.
J Phys Chem Lett ; 14(37): 8360-8366, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37703207

RESUMEN

Two-dimensional (2D) halide perovskites exhibit unique structural and optical properties because large organic molecular cations distort the perovskite structure and the excitons confined in the 2D layers are stable. Here, we report the temperature dependences of the absorption spectra, second harmonic generation (SHG) intensity, and lattice constants of 2D perovskite (BA)2(EA)2Pb3I10 single crystals, where BA is n-butylammonium and EA is ethylammonium. We found that the Urbach tail of the absorption spectrum significantly changes at around 200 K and that the change is correlated with the SHG intensity and the in-plane lattice distortion. We concluded that a random distribution of spontaneous polarizations in the ferroelectric phase modifies the linewidth of the band-edge exciton transition and is the cause of the anomalous temperature dependence of the steepness parameter of the Urbach tail.

7.
Chem Commun (Camb) ; 59(71): 10604-10607, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37528776

RESUMEN

The introduction of diarylamino groups at the 2- and 6-positions of azulene was found to invert the order of the orbital energy levels and allowed the HOMO-LUMO transition, resulting in a substantial increase in absorbance in the visible region. In addition, the stability of their one-electron oxidised species was improved by introducing bromine or methoxy groups at the 1- and 3-positions.

8.
ACS Appl Mater Interfaces ; 15(27): 32487-32495, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37379236

RESUMEN

The power conversion efficiency of tin-based halide perovskite solar cells is limited by large photovoltage losses arising from the significant energy-level offset between the perovskite and the conventional electron transport material, fullerene C60. The fullerene derivative indene-C60 bisadduct (ICBA) is a promising alternative to mitigate this drawback, owing to its superior energy level matching with most tin-based perovskites. However, the less finely controlled energy disorder of the ICBA films leads to the extension of its band tails that limits the photovoltage of the resultant devices and reduces the power conversion efficiency. Herein, we fabricate ICBA films with improved morphology and electrical properties by optimizing the choice of solvent and the annealing temperature. Energy disorder in the ICBA films is substantially reduced, as evidenced by the 22 meV smaller width of the electronic density of states. The resulting solar cells show open-circuit voltages of up to 1.01 V, one of the highest values reported so far for tin-based devices. Combined with surface passivation, this strategy enabled solar cells with efficiencies of up to 11.57%. Our work highlights the importance of controlling the properties of the electron transport material toward the development of efficient lead-free perovskite solar cells and demonstrates the potential of solvent engineering for efficient device processing.

9.
Precis Chem ; 1(2): 69-82, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124243

RESUMEN

Tin-containing metal halide perovskites have enormous potential as photovoltaics, both in narrow band gap mixed tin-lead materials for all-perovskite tandems and for lead-free perovskites. The introduction of Sn(II), however, has significant effects on the solution chemistry, crystallization, defect states, and other material properties in halide perovskites. In this perspective, we summarize the main hurdles for tin-containing perovskites and highlight successful attempts made by the community to overcome them. We discuss important research directions for the development of these materials and propose some approaches to achieve a unified understanding of Sn incorporation. We particularly focus on the discussion of charge carrier dynamics and nonradiative losses at the interfaces between perovskite and charge extraction layers in p-i-n cells. We hope these insights will aid the community to accelerate the development of high-performance, stable single-junction tin-containing perovskite solar cells and all-perovskite tandems.

10.
Chemistry ; 29(34): e202300529, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37005224

RESUMEN

Organic dyes with strong absorption in the near-infrared (NIR) region are potentially useful in medical applications, such as tumor imaging and photothermal therapy. In this work, new NIR dyes combining BAr2 -bridged azafulvene dimer acceptors with diarylaminothienyl donors in a donor-acceptor-donor configuration were synthesized. Surprisingly, it was found that in these molecules the BAr2 -bridged azafulvene acceptor adopts a 5-membered, rather than 6-membered ring structure. The influence of the aryl substituents on the HOMO and LUMO energy levels of the dye compounds was assessed from electrochemical and optical measurements. Strong electron-withdrawing fluorinated substituents (Ar=C6 F5 , 3,5-(CF3 )2 C6 H3 ) lowered the HOMO energy while preserving the small HOMO-LUMO energy gap, resulting in promising NIR dye molecules that combine strong absorption bands centered around 900 nm with good photostability.

11.
J Am Chem Soc ; 145(13): 7528-7539, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36947735

RESUMEN

Hole-collecting monolayers have drawn attention in perovskite solar cell research due to their ease of processing, high performance, and good durability. Since molecules in the hole-collecting monolayer are typically composed of functionalized π-conjugated structures, hole extraction is expected to be more efficient when the π-cores are oriented face-on with respect to the adjacent surfaces. However, strategies for reliably controlling the molecular orientation in monolayers remain elusive. In this work, multiple phosphonic acid anchoring groups were used to control the molecular orientation of a series of triazatruxene derivatives chemisorbed on a transparent conducting oxide electrode surface. Using infrared reflection absorption spectroscopy and metastable atom electron spectroscopy, we found that multipodal derivatives align face-on to the electrode surface, while the monopodal counterpart adopts a more tilted configuration. The face-on orientation was found to facilitate hole extraction, leading to inverted perovskite solar cells with enhanced stability and high-power conversion efficiencies up to 23.0%.

12.
Adv Mater ; 35(9): e2208320, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36482007

RESUMEN

Interfaces in thin-film photovoltaics play a pivotal role in determining device efficiency and longevity. In this work, the top surface treatment of mixed tin-lead (≈1.26 eV) halide perovskite films for p-i-n solar cells is studied. Charge extraction is promoted by treating the perovskite surface with piperazine. This compound reacts with the organic cations at the perovskite surface, modifying the surface structure and tuning the interfacial energy level alignment. In addition, the combined treatment with C60 pyrrolidine tris-acid (CPTA) reduces hysteresis and leads to efficiencies up to 22.7%, with open-circuit voltage values reaching 0.90 V, ≈92% of the radiative limit for the bandgap of this material. The modified cells also show superior stability, with unencapsulated cells retaining 96% of their initial efficiency after >2000 h of storage in N2 and encapsulated cells retaining 90% efficiency after >450 h of storage in air. Intriguingly, CPTA preferentially binds to Sn2+ sites at film surface over Pb2+ due to the energetically favored exposure of the former, according to first-principles calculations. This work provides new insights into the surface chemistry of perovskite films in terms of their structural, electronic, and defect characteristics and this knowledge is used to fabricate state-of-the-art solar cells.

13.
ACS Appl Mater Interfaces ; 14(50): 56290-56297, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36475579

RESUMEN

Perovskite interfaces critically influence the final performance of the photovoltaic devices. Optimizing them by reducing the defect densities or improving the contact with the charge transporting material is key to further enhance the efficiency and stability of perovskite solar cells. Inverted (p-i-n) devices can particularly benefit here, as evident from various successful attempts. However, every reported strategy is adapted to specific cell structures and compositions, affecting their robustness and applicability by other researchers. In this work, we present the universality of perovskite top surface post-treatment with ethylenediammonium diiodide (EDAI2) for p-i-n devices. To prove it, we compare devices bearing perovskite films of different composition, i.e., Sn-, Pb-, and mixed Sn-Pb-based devices, achieving efficiencies of up to 11.4, 22.0, and 22.9%, respectively. A careful optimization of the EDAI2 thickness indicates a different tolerance for Pb- and Sn-based devices. The main benefit of this treatment is evident in the open-circuit voltage, with enhancements of up to 200 mV for some compositions. In addition, we prove that this treatment can be successfully applied by both wet (spin-coating) and dry (thermal evaporation) methods, regardless of the composition. The versatility of this treatment makes it highly appealing for industrial application, as it can be easily adapted to specific processing requirements. We present a detailed experimental protocol, aiming to provide the community with an easy, universal perovskite post-treatment method for reliably improving the device efficiency, highlighting the potential of interfaces for the field.

14.
ACS Mater Lett ; 4(12): 2638-2644, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36507194

RESUMEN

Perovskite/perovskite tandem solar cells have recently exceeded the record power conversion efficiency (PCE) of single-junction perovskite solar cells. They are typically built in the superstrate configuration, in which the device is illuminated from the substrate side. This limits the fabrication of the solar cell to transparent substrates, typically glass coated with a transparent conductive oxide (TCO), and adds constraints because the first subcell that is deposited on the substrate must contain the wide-bandgap perovskite. However, devices in the substrate configuration could potentially be fabricated on a large variety of opaque and inexpensive substrates, such as plastic and metal foils. Importantly, in the substrate configuration the narrow-bandgap subcell is deposited first, which allows for more freedom in the device design. In this work, we report perovskite/perovskite tandem solar cells fabricated in the substrate configuration. As the substrate we use TCO-coated glass on which a solution-processed narrow-bandgap perovskite solar cell is deposited. All of the other layers are then processed using vacuum sublimation, starting with the charge recombination layers, then the wide-bandgap perovskite subcell, and finishing with the transparent top TCO electrode. Proof-of-concept tandem solar cells show a maximum PCE of 20%, which is still moderate compared to those of best-in-class devices realized in the superstrate configuration yet higher than those of the corresponding single-junction devices in the substrate configuration. As both the top and bottom electrodes are semitransparent, these devices also have the potential to be used as bifacial tandem solar cells.

15.
Sci Adv ; 8(30): eabp8135, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35905182

RESUMEN

Monitoring of the spatially resolved exciton spin dynamics in two-dimensional semiconductors has revealed the formation of a spatial pattern and long-range transport of the spin-polarized excitons, which holds promise for exciton-based spin-optoelectronic applications. However, the spatial evolution has been restricted to cryogenic temperatures because of the short exciton spin relaxation times at room temperature. Here, we report that two-dimensional halide perovskites can overcome this limitation owing to their relatively long exciton spin relaxation times and substantial exciton-exciton interactions. We demonstrate the emergence of a halo-like spatial profile in spin-polarized exciton population and its ultrafast expansion at room temperature by performing time-resolved Faraday rotation imaging of spin-polarized excitons in two-dimensional perovskite (C4H9NH3)2(CH3NH3)3Pb4I13. Exciton-exciton exchange interactions induce density-dependent nonlinear relaxation and ultrafast transport of exciton spins and give rise to a rapidly expanding halo-like spatial pattern. The density-dependent spatial control suggests the potential of using two-dimensional halide perovskites for spin-optoelectronic applications.

16.
Sci Adv ; 8(25): eabo1621, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35731878

RESUMEN

Perovskite materials with tunable electronic and structural characteristics can realize various physical properties including electrical/ionic conduction, ferroelectricity, and luminescence. Integrating and coupling these properties in a single perovskite material offer new possibilities for fundamental research and applications. In particular, coupling ferroelectricity and luminescence would enable novel applications. Here, we report that the metal-free ferroelectric perovskite MDABCO (N-methyl-N'-diazabicyclo[2.2.2]octonium)-ammonium triiodide exhibits coupled superior ferroelectricity and visible photoluminescence (PL). Besides strong second-harmonic generation (SHG) associated with its ferroelectricity, MDABCO-ammonium triiodide shows long-lifetime PL at room temperature. Remarkably, the PL intensity depends strongly on the polarization of the excitation light. We found that this anisotropy is coupled to the local crystal orientation that was determined by polarization-resolved SHG. Our results suggest that the anisotropic PL property can be tuned in response to its ferroelectric state via an external field and, thereby, presents a previosuly unobserved functionality in perovskites.

17.
Chem Sci ; 12(40): 13513-13519, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34777771

RESUMEN

Mixed lead-tin (Pb-Sn) halide perovskites with optimum band gaps near 1.3 eV are promising candidates for next-generation solar cells. However, the performance of solar cells fabricated with Pb-Sn perovskites is restricted by the facile oxidation of Sn(ii) to Sn(iv), which induces self-doping. Maltol, a naturally occurring flavor enhancer and strong metal binding agent, was found to effectively suppress Sn(iv) formation and passivate defects in mixed Pb-Sn perovskite films. When used in combination with Sn(iv) scavenging, the maltol surface treatment led to high-quality perovskite films which showed enhanced photoluminescence intensities and charge carrier lifetimes in excess of 7 µs. The scavenging and surface treatments resulted in highly reproducible solar cell devices, with photoconversion efficiencies of up to 21.4% under AM1.5G illumination.

18.
ACS Appl Mater Interfaces ; 13(33): 39178-39185, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34379385

RESUMEN

This work reports strategies for improving the power conversion efficiency (PCE) by capitalizing on temporal changes through the storage effect and immediate improvements by interface passivation. It is demonstrated that both strategies can be combined as shown by PCE improvement in passivated perovskite solar cells (PSCs) upon ambient storage because of trap density reduction. By analyzing the dominant charge recombination process, we find that lead-related traps in perovskite bulk, rather than at the surface, are the recombination centers in both as-fabricated and ambient-stored passivated PSCs. This emphasizes the necessity to reduce intrinsic defects in the perovskite bulk. Furthermore, storage causes temporal changes in band alignment even in passivated PSCs, contributing to PCE improvement. Building on these findings, composition engineering was employed to produce further immediate PCE improvements because of defect reduction in the bulk, achieving a PCE of 22.2%. These results show that understanding the dominant recombination mechanisms within a PSC is important to inform strategies for producing immediate and temporal PCE enhancements either by interface passivation, storage, composition engineering, or a combination of them all to fabricate highly efficient PSCs.

19.
Phys Rev Lett ; 126(7): 077401, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33666485

RESUMEN

We investigate the impact of phonon excitations on the photoexcited carrier dynamics in a lead-halide perovskite CH_{3}NH_{3}PbI_{3}, which hosts unique low-energy phonons that can be directly excited by terahertz pulses. Our time-resolved photoluminescence measurements reveal that strong terahertz excitation prolongs the cooling time of hot carriers, providing direct evidence for the hot-phonon bottleneck effect. In contrast to the previous studies where phonons are treated as a passive heat bath, our results demonstrate that phonon excitation can significantly perturb the carrier relaxation dynamics in halide perovskites through the coupling between transverse- and longitudinal-optical phonons.

20.
ACS Appl Mater Interfaces ; 12(29): 32994-33003, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32583662

RESUMEN

A series of cost-effective hole-transporting materials (TOP-HTMs) for perovskite solar cells (PSCs) was designed and synthesized. The molecules, composed of multiple 4,4'-dimethoxytriphenylamines linked to a benzene core via trans-vinylene units, can be manufactured from inexpensive materials through a simple synthetic route. The photophysical, electrochemical, and thermal properties, as well as hole mobilities, were strongly influenced by the position and number of vinyl triarylamine substituents on the core benzene ring. CH3NH3PbI3-based solar cells using the X-shaped TOP-HTM 3 with additives gave a high power conversion efficiency of 17.5% (forward scan)/18.6% (reverse scan). Crucially, TOP-HTMs gave high working device efficiency without the need for conduction-enhancing additives. The power conversion efficiency for the device with additive-free TOP-HTM 3 was 16.0% (forward scan)/16.6% (reverse scan). Device stability is also enhanced and is superior to the reference HTM, 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...