Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Rep ; 13(1): 22469, 2023 12 18.
Article En | MEDLINE | ID: mdl-38110459

Natto, known for its high vitamin K content, has been demonstrated to suppress atherosclerosis in large-scale clinical trials through a yet-unknown mechanism. In this study, we used a previously reported mouse model, transplanting the bone marrow of mice expressing infra-red fluorescent protein (iRFP) into LDLR-deficient mice, allowing unique and non-invasive observation of foam cells expressing iRFP in atherosclerotic lesions. Using 3 natto strains, we meticulously examined the effects of varying vitamin K levels on atherosclerosis in these mice. Notably, high vitamin K natto significantly reduced aortic staining and iRFP fluorescence, indicative of decreased atherosclerosis. Furthermore, mice administered natto showed changes in gut microbiota, including an increase in natto bacteria within the cecum, and a significant reduction in serum CCL2 expression. In experiments with LPS-stimulated macrophages, adding natto decreased CCL2 expression and increased anti-inflammatory cytokine IL-10 expression. This suggests that natto inhibits atherosclerosis through suppression of intestinal inflammation and reduced CCL2 expression in macrophages.


Atherosclerosis , Plaque, Atherosclerotic , Soy Foods , Animals , Mice , Red Fluorescent Protein , Mice, Knockout , Atherosclerosis/genetics , Atherosclerosis/therapy , Atherosclerosis/metabolism , Receptors, LDL/metabolism , Vitamin K , Mice, Inbred C57BL , Disease Models, Animal
2.
Exp Anim ; 72(4): 460-467, 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37183025

Adeno-associated virus serotype 9 (AAV9) has become a popular tool for gene transfer because of its ability to cross the blood-brain barrier and efficiently transduce genetic material into a variety of cell types. The study utilized GRR (Green-to-Red Reporter) mouse embryos, in which the expression of iCre results in the disappearance of Green Fluorescent Protein (GFP) expression and the detection of Discosoma sp. Red Fluorescent Protein (DsRed) expression by intraplacental injection. Our results demonstrate that AAV9-CMV-iCre can transduce multiple organs in embryos at developmental stages E9.5-E11.5, including the liver, heart, brain, thymus, and intestine. These findings suggest that intraplacental injection of AAV9-CMV-iCre is a viable method for the widespread transduction of GRR mouse embryos.


Cytomegalovirus Infections , Dependovirus , Mice , Animals , Dependovirus/genetics , Serogroup , Brain/metabolism , Blood-Brain Barrier , Cytomegalovirus Infections/metabolism , Genetic Vectors , Transduction, Genetic
3.
PLoS Biol ; 20(1): e3001507, 2022 01.
Article En | MEDLINE | ID: mdl-35041655

Genome editing can introduce designed mutations into a target genomic site. Recent research has revealed that it can also induce various unintended events such as structural variations, small indels, and substitutions at, and in some cases, away from the target site. These rearrangements may result in confounding phenotypes in biomedical research samples and cause a concern in clinical or agricultural applications. However, current genotyping methods do not allow a comprehensive analysis of diverse mutations for phasing and mosaic variant detection. Here, we developed a genotyping method with an on-target site analysis software named Determine Allele mutations and Judge Intended genotype by Nanopore sequencer (DAJIN) that can automatically identify and classify both intended and unintended diverse mutations, including point mutations, deletions, inversions, and cis double knock-in at single-nucleotide resolution. Our approach with DAJIN can handle approximately 100 samples under different editing conditions in a single run. With its high versatility, scalability, and convenience, DAJIN-assisted multiplex genotyping may become a new standard for validating genome editing outcomes.


Gene Editing , Genotyping Techniques/methods , Software , Animals , Gene Knock-In Techniques , Genome , Genotype , INDEL Mutation , Machine Learning , Mice, Inbred C57BL , Mice, Inbred ICR , Mutation , Nanopore Sequencing , Sequence Analysis, DNA
4.
Sci Rep ; 11(1): 21827, 2021 11 08.
Article En | MEDLINE | ID: mdl-34750345

Non-alcoholic fatty liver disease (NAFLD) constitutes a metabolic disorder with high worldwide prevalence and increasing incidence. The inflammatory progressive state, non-alcoholic steatohepatitis (NASH), leads to liver fibrosis and carcinogenesis. Here, we evaluated whether tyrosinase mutation underlies NASH pathophysiology. Tyrosinase point-mutated B6 (Cg)-Tyrc-2J/J mice (B6 albino) and C57BL/6J black mice (B6 black) were fed with high cholesterol diet (HCD) for 10 weeks. Normal diet-fed mice served as controls. HCD-fed B6 albino exhibited high NASH susceptibility compared to B6 black, a phenotype not previously reported. Liver injury occurred in approximately 50% of B6 albino from one post HCD feeding, with elevated serum alanine aminotransferase and aspartate aminotransferase levels. NASH was induced following 2 weeks in severe-phenotypic B6 albino (sB6), but B6 black exhibited no symptoms, even after 10 weeks. HCD-fed sB6 albino showed significantly higher mortality rate. Histological analysis of the liver revealed significant inflammatory cell and lipid infiltration and severe fibrosis. Serum lipoprotein analysis revealed significantly higher chylomicron and very low-density lipoprotein levels in sB6 albino. Moreover, significantly higher small intestinal lipid absorption and lower fecal lipid excretion occurred together with elevated intestinal NPC1L1 expression. As the tyrosinase point mutation represents the only genetic difference between B6 albino and B6 black, our work will facilitate the identification of susceptible genetic factors for NASH development and expand the understanding of NASH pathophysiology.


Cholesterol, Dietary/administration & dosage , Cholesterol, Dietary/adverse effects , Monophenol Monooxygenase/genetics , Non-alcoholic Fatty Liver Disease/etiology , Point Mutation , Albinism, Oculocutaneous/complications , Albinism, Oculocutaneous/enzymology , Albinism, Oculocutaneous/genetics , Animals , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Disease Susceptibility , Humans , Intestine, Small/metabolism , Intestine, Small/pathology , Lipoproteins/blood , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/genetics
5.
Sci Rep ; 11(1): 4374, 2021 02 23.
Article En | MEDLINE | ID: mdl-33623082

In order to increase the contribution of donor HSC cells, irradiation and DNA alkylating agents have been commonly used as experimental methods to eliminate HSCs for adult mice. But a technique of HSC deletion for mouse embryo for increase contribution of donor cells has not been published. Here, we established for the first time a procedure for placental HSC transplantation into E11.5 Runx1-deficient mice mated with G1-HRD-Runx1 transgenic mice (Runx1-/-::Tg mice) that have no HSCs in the fetal liver. Following the transplantation of fetal liver cells from mice (allogeneic) or rats (xenogeneic), high donor cell chimerism was observed in Runx1-/-::Tg embryos. Furthermore, chimerism analysis and colony assay data showed that donor fetal liver hematopoietic cells contributed to both white blood cells and red blood cells. Moreover, secondary transplantation into adult recipient mice indicated that the HSCs in rescued Runx1-/-::Tg embryos had normal abilities. These results suggest that mice lacking fetal liver HSCs are a powerful tool for hematopoiesis reconstruction during the embryonic stage and can potentially be used in basic research on HSCs or xenograft models.


Hematopoiesis , Hematopoietic Stem Cell Transplantation/methods , Placenta/cytology , Animals , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/deficiency , Core Binding Factor Alpha 2 Subunit/genetics , Erythrocytes/cytology , Erythrocytes/metabolism , Female , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Mice , Mice, Inbred C57BL , Pregnancy , Rats , Transplantation, Heterologous/methods , Transplantation, Homologous/methods
...