Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
J Med Case Rep ; 17(1): 507, 2023 Nov 24.
Article En | MEDLINE | ID: mdl-37996900

BACKGROUND: The duodenal web is a thin, elongated, web-like structure that is one of the factors contributing to duodenal obstruction. Only 100 cases have been reported in the literature. We present a 2.5-year-old cachectic Afghan child who did not have any overt signs and symptoms of intestinal obstruction, like recurrent vomiting, abdominal distention, and weight loss. The web was discovered near the intersection of the third and fourth portions, which is an uncommon location for the duodenal web. The late presentation of congenital duodenal web with partial obstruction is rare but well-known and has been reported in this case. CASE PRESENTATION: A 2.5-year-old cachectic Afghan child who had recurrent vomiting and experienced abdominal distention was brought to Maiwand Teaching Hospital from the Jabelsuraj region of Parwan province. The patient was suffering from unusual signs and symptoms like recurrent vomiting, abdominal distention, weight loss, and constipation. The diagnosis of these anomalies was established by a detailed history, clinical features, and abdominal CT scan. In the computerized tomography scanning (CT-Scan) image reported, there was a web with stenosis and partial obstruction in the distal aspect of the third-to-fourth portion of the duodenum. After preoperative stabilization, the child was taken for surgery. The abdomen was opened by a right upper abdominal transverse incision. After web resection and duodenoplasty, the patient was shifted to the recovery room in satisfactory condition. The child was allowed to feed after 8 days, which he tolerated well. CONCLUSION: Congenital duodenal web with partial obstruction is typically observed in the second and third years of life. It is suspected in patients with recurrent vomiting, abdominal distention, weight loss, and constipation. Partial obstruction may not have an overt presentation, making it a challenging diagnosis for general practitioners. Abdomen X-ray and CT scan usually confirm the diagnosis, and successful surgical intervention is recommended.


Duodenal Diseases , Duodenal Obstruction , Male , Humans , Child, Preschool , Duodenum/diagnostic imaging , Duodenum/surgery , Duodenum/abnormalities , Duodenal Obstruction/diagnostic imaging , Duodenal Obstruction/etiology , Duodenal Obstruction/surgery , Constipation/complications , Vomiting/complications , Weight Loss
2.
Genet Res (Camb) ; 2023: 9999660, 2023.
Article En | MEDLINE | ID: mdl-37829154

EDSS1, a syndrome characterized by ectodermal dysplasia-syndactyly, is inherited in an autosomal recessive manner due to mutations in the NECTIN4/PVRL4 gene. Clinical manifestations of the syndrome include defective nail plate, sparse to absent scalp and body hair, spaced teeth with enamel hypoplasia, and bilateral cutaneous syndactyly in the fingers and toes. Here, we report a consanguineous family of Kashmiri origin presenting features of EDSS1. Using whole exome sequencing, we found a recurrent nonsense mutation (NM_030916: c.181C > T, p.(Gln61 ∗)) in the NECTIN4 gene. The variant segregated perfectly with the disorder within the family. The candidate variant was absent in 50 in-house exomes pertaining to other disorders from the same population. In addition to the previously reported clinical phenotype, an upper lip cleft was found in one of the affected members as a novel phenotype that is not reported by previous studies in EDSS1 patients. Therefore, the study presented here, which was conducted on the Kashmiri population, is the first to document a NECTIN4 mutation associated with the upper lip cleft as a novel phenotype. This finding broadens the molecular and phenotypic spectrum of EDSS1.


Cleft Lip , Ectodermal Dysplasia , Jaw Abnormalities , Nectins , Syndactyly , Humans , Alopecia/complications , Cell Adhesion Molecules/genetics , Cleft Lip/genetics , Cleft Lip/complications , Codon, Nonsense/genetics , Consanguinity , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/complications , Jaw Abnormalities/complications , Mutation , Nectins/genetics , Pedigree , Phenotype , Syndactyly/genetics , Syndactyly/complications , Syndrome
4.
Medicina (Kaunas) ; 59(1)2023 Jan 02.
Article En | MEDLINE | ID: mdl-36676727

Background and Objectives: Lamellar ichthyosis is a rare skin disease characterized by large, dark brown plate-like scales on the entire body surface with minimum or no erythema. This phenotype is frequently associated with a mutation in the TGM1 gene, encoding the enzyme transglutaminase 1 which plays a catalytic role in the formation of the cornified cell envelop. The present study aimed to carry out clinical and genetic characterization of the autosomal recessive lamellar ichthyosis family from Balochistan. Materials and Methods: A consanguineous family with lamellar ichthyosis was enrolled from Balochistan, Pakistan. PCR amplification of all the exons and splice site junctions of the TGM1 gene followed by Sanger sequencing was performed on the genomic DNA. The identified variant was checked by In silico prediction tools to evaluate the effect of the variant on protein. Results: Sanger sequencing identified a homozygous nonsense variant c.131G >A (p.Trp44*) in the TGM1 gene that segregated in the autosomal recessive mode of inheritance in the family. The identified variant results in premature termination of transcribed mRNA and is predicted to cause a truncated or absent translation product transglutaminase-1 (TGase-1) accompanied by loss of catalytic activity, causing a severe clinical phenotype of lamellar ichthyosis in the patients. Conclusions: Here, we report a consanguineous lamellar ichthyosis family with a homozygous nonsense variant in the TGM1 gene. The variant is predicted as pathogenic by different In silico prediction tools.


Ichthyosis, Lamellar , Humans , Ichthyosis, Lamellar/genetics , Ichthyosis, Lamellar/pathology , Mutation , Skin/pathology , Phenotype , Exons
5.
J Neurogenet ; 36(4): 108-114, 2022.
Article En | MEDLINE | ID: mdl-36508181

Global developmental delay (GDD) is a lifelong disability that affects 1-3% of the population around the globe. It is phenotypically variable and highly heterogeneous in terms of the underlying genetics. Patients with GDD are intellectually disabled (ID) manifesting cognitive impairment and deficient adaptive behavior. Here, we investigated a two-looped consanguineous family segregating severe ID, seizure, and progressive microcephaly. Magnetic resonance imaging (MRI) of the brain showed mild brain atrophy and myelination defect. Whole exome sequencing (WES) was performed on the DNA samples of two patients and a novel homozygous missense variant (Chr11:g0.93528085; NM_004268.5_c.871T > C; p. Trp291Gly) was identified in the MED17 gene. Sanger sequencing revealed that the identified variant is heterozygous in both parents and healthy siblings. This variant is conserved among different species, causes a non-conserved amino acid change, and is predicted deleterious by various in silico tools. The variant is not reported in population variant databases. MED17 (OMIM: 613668) encodes for the mediator of RNA polymerase II transcription complex subunit 17. Structure modeling of MED17 protein revealed that Trp291 is involved in different inter-helical interactions, providing structural stability. Replacement of Trp291Gly, a less hydrophobic amino acid loses the inter-helical interaction leading to a perturb variant of MED17 protein.


Microcephaly , Child , Humans , Microcephaly/genetics , Pedigree , Brain , Phenotype , Homozygote , Amino Acids/genetics , Developmental Disabilities/genetics , Mediator Complex/genetics
6.
Eur J Med Genet ; 65(10): 104578, 2022 Oct.
Article En | MEDLINE | ID: mdl-35987473

Nephronophthisis (NPHP) is a group of rare inherited ciliopathy disorders characterized by the multicystic dysplastic kidney, oligohydramnios, and tubulointerstitial nephritis that progresses to end-stage renal disease (ESRD). NPHP is a clinically and genetically heterogeneous disorder with extrarenal symptoms including skeletal deformities, nervous system anomalies, and ophthalmologic features. Three clinical subtypes, infantile, juvenile, and adolescent, have been recognized based on age of onset of ESRD. Infantile nephronophthisis with asphyxiating thoracic dystrophy is a very rare association. Here, we investigated a consanguineous family having two neonates with a clinical phenotype of lethal infantile NPHP associated with asphyxiating thoracic dystrophy. Whole exome sequence data analysis identified a splice acceptor site variant (Chr3-132408107-CCT-C; NM_153240.4: c.2694-2_2694-1del) in the NPHP3 gene. The segregation of a variant in the family was confirmed by Sanger sequencing. The lethal phenotype in our case might be due to respiratory insufficiency secondary to a severely restricted thoracic cage. Present work is an exclusive depiction of lethal infantile NPHP phenotype in association with asphyxiating thoracic dystrophy that has not been reported before in families segregating NPHP3 mutations. Moreover, this work expands the phenotypic spectrum of NPHP3 variants. Overall, our findings add to the increasing body of evidence that mutations in ciliary genes/proteins show pleiotropic effects with phenotypic overlap between related disorders and apparently unrelated clinical entities.


Kidney Diseases, Cystic , Kidney Failure, Chronic , Ellis-Van Creveld Syndrome , Humans , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Kidney Failure, Chronic/complications , Mutation , RNA Splice Sites
7.
Eur J Hum Genet ; 30(1): 22-33, 2022 01.
Article En | MEDLINE | ID: mdl-34135477

Hearing impairment (HI) is a common disorder of sensorineural function with a highly heterogeneous genetic background. Although substantial progress has been made in the understanding of the genetic etiology of hereditary HI, many genes implicated in HI remain undiscovered. Via exome and Sanger sequencing of DNA samples obtained from consanguineous Pakistani families that segregate profound prelingual sensorineural HI, we identified rare homozygous missense variants in four genes (ADAMTS1, MPDZ, MVD, and SEZ6) that are likely the underlying cause of HI. Linkage analysis provided statistical evidence that these variants are associated with autosomal recessive nonsyndromic HI. In silico analysis of the mutant proteins encoded by these genes predicted structural, conformational or interaction changes. RNAseq data analysis revealed expression of these genes in the sensory epithelium of the mouse inner ear during embryonic, postnatal, and adult stages. Immunohistochemistry of the mouse cochlear tissue, further confirmed the expression of ADAMTS1, SEZ6, and MPDZ in the neurosensory hair cells of the organ of Corti, while MVD expression was more prominent in the spiral ganglion cells. Overall, supported by in silico mutant protein analysis, animal models, linkage analysis, and spatiotemporal expression profiling in the mouse inner ear, we propose four new candidate genes for HI and expand our understanding of the etiology of HI.


ADAMTS1 Protein/genetics , Carboxy-Lyases/genetics , Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , ADAMTS1 Protein/chemistry , ADAMTS1 Protein/metabolism , Animals , Carboxy-Lyases/chemistry , Carboxy-Lyases/metabolism , Female , Genes, Recessive , Hair Cells, Auditory/metabolism , Hearing Loss, Sensorineural/pathology , Humans , Male , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Mutation , Pedigree , Protein Domains
8.
Article En | MEDLINE | ID: mdl-34616483

Berberis lycium Royle has a long history of medicinal uses to treat different diseases. It naturally grows on the mountains of Indian subcontinent. Its ethnobotanical and biochemical study from the state of Azad Jammu and Kashmir (AJ&K) was not previously explored. So, the objective of the current study was to explore the ethnobotanical and biochemical properties of the B. lycium Royle population of AJ&K. For this purpose, samples of B. lycium Royle were randomly collected from five districts of Azad Jammu and Kashmir, including thirty-five locations. Demographic features of informants such as plant part used, methods of preparation, modes of administration, conservation status, and ethnomedicinal uses were documented. It was used for treating different diseases such as diabetes, arthritis, joint pain, and stomach ulcer. This plant is very famous for providing medicinal roots, leaves, and fruits which are extensively used in many parts of the world. The biochemical analysis was conducted for total phenolic contents (TPC), chlorophyll contents, and antioxidant activity. The highest level of TPC found was 88.66 ± 1.07 µg/g of gallic acid equivalent phenolic (GAE) from leaves collected from Patikka (Chanjhal), Muzaffarabad District, AJ&K. The highest total chlorophyll contents (3.75 ± 0.53 µg/ml) were found in samples collected from Sathrian, Neelum District. The highest antioxidant activity with lowest IC50 value (33.26 µg/ml) was obtained from the root of sample collected from Bakreyali, Muzaffarabad District, as compared with other districts. The concentration of berberine was found to be 4.76 percent in the root bark of B. lycium Royle, estimated by high-performance liquid chromatography (HPLC). In syrup composition, 0.95 mg/5 ml of berberine was used. Hence, it is concluded that amongst the five districts, the plant parts (stem, fruits, and root) collected from Muzaffarabad District, AJ&K, showed the highest medicinal potential due to its unique climatic conditions.

9.
Anal Cell Pathol (Amst) ; 2021: 4909012, 2021.
Article En | MEDLINE | ID: mdl-34422550

Chronic myeloid leukemia (CML) is a disease of hematopoietic stem cells and is caused by the balanced translocations among the long arms of chromosomes 9 and 22, which are called the Philadelphia (Ph) chromosome. In this study, 131 CML patients were enrolled. Complete blood cell count was performed at the time of diagnosis for all the patients. Cytogenetic (karyotyping) examination using bone marrow samples was conducted on 76 CML patients for the confirmation of Ph-positive (9;22)(q34;q11) standard translocation, complex variant translocation, and additional chromosome abnormalities. FISH was performed on 38 patients for diagnostic purposes and on 39 patients for monitoring purposes. Twenty-two samples of CML patients were evaluated by reverse transcriptase PCR and real-time PCR for the patients who failed to respond against imatinib mesylate. In this study, 72 (54.96%) were males and 59 (45.03%) were females with a median age of 38.5 years. CBC values in the diagnosis process showed that 75 patients had high values of WBC being >100 × 103/µl, while 71 (58.01) patients exhibited reduced values of hemoglobin, i.e., <10.00 mg/dl, and high values of PLTs > 100 were observed in 40 (30.53%) patients. Cytogenetic results show that standard translocation was developed in 63 (82.89%), development of complex variant translocations in 4 (5.32%), additional chromosomal abnormalities (ACAs) in 3 (3.94%), and ACAs together with complex variant translocations in 1 (1.31%) patient. At the time of diagnosis, 61 (92.95%) patients were in the chronic phase, 4 (5.63%) were in the accelerated phase, and only 1 (1.40%) was in the blast crisis. Out of twenty-two patients, only 6 CML patients who were shifted from imatinib mesylate to nilotinib showed BCR-ABL-positive amplification. However, only 7 out of twenty-one patients exhibit BCR-ABL gene values ≥ 1 after three months of follow-up when analyzed by the quantitative real-time PCR. In conclusion, we found a novel five-way translocation 46XX,t(1;2;2;17;9;22)(p36.3,q21;q11.2,q21,q34,q11.2) and a novel four-way complex variant translocation 48XY,+8(8;17)(9;22),+der(22)(q11.2;q23)(q34;q11.2) in the accelerated phase.


Biomarkers, Tumor/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Philadelphia Chromosome , Translocation, Genetic , Adolescent , Adult , Antineoplastic Agents/therapeutic use , Drug Substitution , Female , Humans , Imatinib Mesylate/therapeutic use , In Situ Hybridization, Fluorescence , Karyotyping , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Male , Middle Aged , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Treatment Outcome , Young Adult
11.
Biomed Res Int ; 2021: 6626015, 2021.
Article En | MEDLINE | ID: mdl-33688495

BACKGROUND: Bardet-Biedl syndrome (BBS) is a rare autosomal recessive inherited disorder with distinctive clinical feature such as obesity, degeneration of retina, polydactyly, and renal abnormalities. The study was aimed at finding out the disease-causing variant/s in patients exhibiting clinical features of BBS. METHODS: The identification of disease-causing variant was done by using whole exome sequencing on Illumina HiSeq 4000 platform involving the SeqCap EZ Exome v3 kit (Roche NimbleGen). The identified variant was further validated by Sanger sequencing. RESULTS: WES revealed a novel homozygous missense mutation (NM_031885: c.443A>T:p.N148I) in exon 3 of the BBS2 gene. Sanger sequencing confirmed this variant as homozygous in both affected subjects and heterozygous in obligate parents, demonstrating autosomal recessive inheritance pattern. To the best of our knowledge, this variant was not present in literature and all publically available databases. The candidate variant is predicted to be pathogenic by a set of in-silico softwares. CONCLUSION: Clinical and genetic spectrum of BBS and BBS-like disorders is not completely defined in the Pakistani as well as in Kashmiri population. Therefore, more comprehensive genetic studies are required to gain insights into genotype-phenotype associations to facilitate carrier screening and genetic counseling of families with such disorders.


Bardet-Biedl Syndrome/metabolism , Homozygote , Mutation, Missense , Pedigree , Proteins/genetics , Adult , Amino Acid Substitution , Bardet-Biedl Syndrome/pathology , Female , Humans , India , Male
12.
Sci Rep ; 10(1): 21950, 2020 12 15.
Article En | MEDLINE | ID: mdl-33319795

Although many factors have been identified and used to enhance the iPSC reprogramming process, its efficiency remains quite low. In addition, reprogramming efficacy has been evidenced to be affected by disease mutations that are present in patient samples. In this study, using RNA-seq platform we have identified and validated the differential gene expression of five transcription factors (TFs) (GBX2, NANOGP8, SP8, PEG3, and ZIC1) that were associated with a remarkable increase in the number of iPSC colonies generated from a patient with Parkinson's disease. We have applied different bioinformatics tools (Gene ontology, protein-protein interaction, and signaling pathways analyses) to investigate the possible roles of these TFs in pluripotency and developmental process. Interestingly, GBX2, NANOGP8, SP8, PEG3, and ZIC1 were found to play a role in maintaining pluripotency, regulating self-renewal stages, and interacting with other factors that are involved in pluripotency regulation including OCT4, SOX2, NANOG, and KLF4. Therefore, the TFs identified in this study could be used as additional transcription factors that enhance reprogramming efficiency to boost iPSC generation technology.


Induced Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cellular Reprogramming , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Parkinson Disease/metabolism , Parkinson Disease/pathology
13.
Acta Derm Venereol ; 100(16): adv00275, 2020 Sep 30.
Article En | MEDLINE | ID: mdl-32926178

Dystrophic epidermolysis bullosa is an inherited skin disorder characterized by fragile skin that is prone to blistering. We report here a consanguineous Pakistani family with two siblings, in whom a severe recessive dystrophic epidermolysis bullosa was suspected. Using whole-exome sequencing for one sibling, the homozygous base substitution c.7249C>G in COL7A1 was identified, and could be confirmed in the other sibling by Sanger sequencing. In our exome data, this mutation was annotated as a missense substitution (p.Gln2417Glu), but in silico tools indicated a possible effect on splicing. Using the ExonTrap vector it was verified that the mutation leads to activation of a cryptic donor splice site, which leads to loss of 26 nucleotides, and a frame-shift event predicted to result in a truncated protein (p.Q2417Sfs*57). The present report de-scribes an apparent COL7A1 missense substitution with an unexpected consequence on splicing that leads to a severe recessive dystrophic epidermolysis bullosa phenotype.


Epidermolysis Bullosa Dystrophica , Collagen/genetics , Collagen Type VII/genetics , Epidermolysis Bullosa Dystrophica/diagnosis , Epidermolysis Bullosa Dystrophica/genetics , Genes, Recessive , Humans , Mutation , Mutation, Missense , RNA Splicing
14.
Front Genet ; 11: 516, 2020.
Article En | MEDLINE | ID: mdl-32528530

In spite of the significant advancements in the treatment modalities, 30% of advanced stage ovarian cancer (OC) patients do not respond to the standard chemotherapeutic regimen and most of the responders finally relapse over time due to the escalation of multidrug resistance (MDR) Phenomenon. Our present study evaluated chemotherapeutic sensitivity response among 47 ovarian tumor patients of which we found 37 (78.8%) sensitive and remaining 10 (21.2%) resistant. Among the resistant, seven tumor samples were found to be platinum resistant or refractory to platinum (CB/TX), one to carboplatin, and two to 5FU. Notably, all these resistant cases were observed in the disease recurrence group of patients identified at stage III or IV. The stage III resistant cases revealed heterozygous mutation (C/T) in exon 12 (C1236T) and 26 (C3435T) and increased level of mRNA, whereas homozygous mutation (T/T) was found at stage IV tumor patients. The genotypic difference was found to be significant (p = 0.03) for exon 12, and p = 0.003 for exon 26 mutant genotypes. No significant association between genotypes of different exons with tumor stages and tumor grade was observed (p > 0.05). However, a significant association was observed between the genotype of exon-12 and histopathology of tumor tissue (p = 0.028). Statistically, the chemotherapy response was found to be significantly associated with the tumor stage (p = 0.019). We also observed a significant difference in PFS (P = 0.019) and OS (P = 0.047) between tumor grades 1 and 3. Notably, the highest mRNA expression was observed in resistant tumor sample T-32, where interestingly we found homozygosity TT in all of the exons 12, 21, and 26. Thus, we suggest that exons 12 (C1236T) and exon 26 (C3435T) polymorphism may play a role in inducing drug resistance by altering the expression level of the MDR1 gene. To summarize, we suggest that the expression of MDR1 in OC is influenced by tumor stage and genotype variants as well as by chemotherapeutic drugs. Thus our findings suggest that inter individual variability in platinum based therapy may be anticipated by MDR1 genotypes. Further studies on a large number of samples shall eventually lead to provide beneficial information for the individualized chemotherapy.

15.
Biomed Res Int ; 2020: 5980135, 2020.
Article En | MEDLINE | ID: mdl-33490246

The present study was conducted to get more information about the genome and locate the taxonomic position of Schizothorax niger in Schizothoracinae through mitochondrial 13 protein-coding genes (PCGs). These PCGs for S. niger were found to be 11409 bps in length ranging from 165 (ATPase 8) to 1824 bps (NADH dehydrogenase subunit 5) and encode 3801 amino acids. In these PCGs, 4 genes overlap on the similar strands, while one shown on the opposite one: ATPase 6+8 and NADH dehydrogenase subunit 4+4L overlap by 7 nucleotides. Similarly, ND5-ND6 overlap by 4 nucleotides, while ATP6 and COIII overlap by 1 nucleotide. Similarly, four commonly used amino acids in S. niger were Leu (15.6 %), Ile (10.12 %), Thr (8.12 %), and Ala (8.7 %). The results presented that COII, COIII, NDI, ND4L, and Cytb had substantial amino acid conservation as compared to the COI gene. Through phylogenetic analysis, it was observed that S. niger is closely linked with S. progastus, S. labiatus, S. plagiostomus, and S. nepalensis with high bootstrap values. The present study provided more genomic data to know the diversity of the mitochondrial genome and its molecular evolution in Schizothoracinae.


Cyprinidae , Fish Proteins , Mitochondrial Proteins , Animals , Cyprinidae/classification , Cyprinidae/genetics , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Fish Proteins/chemistry , Fish Proteins/genetics , Genomics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Phylogeny , Sequence Analysis, DNA
16.
J Gene Med ; 22(1): e3143, 2020 01.
Article En | MEDLINE | ID: mdl-31750994

BACKGROUND: Syndactyly is a clinical feature of split-hand foot malformation (SHFM), ectodermal-dysplasia-syndactyly (EDSS1) and Cenani-Lenz syndactyly syndromes (CLSS). In EDSS1, only cutaneous syndactyly is observed, with sparse hair, abnormal nails and dentition. In SHFM, bony syndactyly may vary from hypoplasia of one phalanx to aplasia of central digits, extending to complete fusion of all fingers and toes in CLSS. Several genes have been assigned to these syndromes. Performing a single step molecular diagnostics becomes a challenge when a phenotype has overlaps with several syndromes or when some of the clinical features are not fully expressed in patients. METHODS: Whole exome sequencing (WES) analysis on one sample derived from a consanguineous family was performed. A causative variant in WES data was prioritized via standard bioinformatics tools. The selected variant was Sanger sequenced in all the available family members for autosomal recessive segregation. RESULTS: A novel missense variant (c.1151A>G; p.Tyr384Cys) was identified in the LRP4 gene. Sanger validation confirmed that all affected individuals were homozygous and the obligate carriers were heterozygous for this variant. The variant is neither reported in 1000 human genomes, nor in 60 706 exomes databases, and is predicted as "pathogenic" by SIFT, Polyphen-2 and MutationTaster software. CONCLUSIONS: The present study broadens the pathogenic spectrum of the LRP4 gene in syndactyly syndromes. WES is a powerful tool for genetic analysis in research and can be readily used as a first-line diagnostic test in syndactyly and related phenotypes.


LDL-Receptor Related Proteins/genetics , Limb Deformities, Congenital/genetics , Mutation, Missense , Syndactyly/genetics , Adolescent , Child , Consanguinity , Extremities , Female , Genes, Recessive , Homozygote , Humans , Male , Pedigree , Syndactyly/diagnosis , Exome Sequencing
17.
J Dermatol Sci ; 95(3): 113-118, 2019 Sep.
Article En | MEDLINE | ID: mdl-31421932

BACKGROUND: UV-sensitive syndrome (UVSS) is a rare autosomal recessive genodermatosis characterised by photosensitivity, and hyperpigmentation, freckling, and dryness of sun exposed areas. In contrast to other photosensitivity disorders, affected patients show no predisposition to cutaneous melanoma or neurological dysfunction. UVSS results from a defect in the transcription-coupled nucleotide excision repair (TC-NER) mechanism. UVSS can be caused by mutations in the genes ERCC8, ERCC6, and UVSSA. OBJECTIVE: To determine the underlying genetic cause of UVSS and its functional consequences in nine members of two large, unrelated consanguineous pedigrees from Pakistan. METHODS: Genomic DNA from one affected member of each family was subjected to whole exome sequencing. The identified mutation was then validated via Sanger sequencing using samples from all available family members. Molecular cloning and mammalian cell cultures were used for the translation and localisation of wild type (WT) and mutant constructs. RESULTS: A novel homozygous nonsense mutation, (c.1040G>A [p.(Trp347*)]), was detected in exon 6 of the UVSSA gene in both families. Sanger sequencing revealed co-segregation of the nonsense mutation with the UVSS phenotype. Immunoblotting revealed the anticipated 81kDa band for the WT construct, and a truncated protein of around 39kDa for the mutant. In mutant samples, immunofluorescence revealed mislocalisation of UVSSA from the nucleus to the cytoplasm. CONCLUSIONS: This is the first report of UVSS in the Pakistani population and the fourth report of a disease-causing mutation in UVSSA. The study broadens the UVSSA mutational spectrum, and contributes to functional understanding of truncated UVSSA proteins.


Carrier Proteins/genetics , Photosensitivity Disorders/genetics , Adolescent , Child , Codon, Nonsense , Consanguinity , DNA Mutational Analysis , Female , Homozygote , Humans , Male , Pakistan , Pedigree , Exome Sequencing
18.
Int J Dermatol ; 58(8): 946-952, 2019 Aug.
Article En | MEDLINE | ID: mdl-31077348

BACKGROUND: Autosomal recessive wooly hair/hypotrichosis is an inherited disorder of hair characterized by less dense, short, and tightly curled hair on the scalp and sometimes less dense to complete absence of eyebrows and eyelashes. Autosomal recessive wooly hair/hypotrichosis phenotypes are mostly associated with pathogenic sequence variants in LIPH and LPAR6 genes. METHODS: To find out the molecular basis of the disease, five families with autosomal recessive wooly hair/hypotrichosis were recruited for genetic analysis. Direct Sanger sequencing of LIPH and LPAR6 genes was carried out using BigDye chain termination chemistry. P2RY5 protein homology models were developed to study the effect of mutation on protein structure in a family having novel mutation. RESULTS: Sanger sequencing revealed a novel homozygous missense mutation (c.47A>T) in the LPAR6 gene in family A, while recurrent mutation (c.436G>A) was detected in the rest of the four families (B-E). Protein homology models for both native and mutant P2RY5 protein were developed to study the difference in subtle structural features because of Lys16Met (K16M) mutation. We observed that P2RY5K16M mutation results decrease in the number of ionic interactions detrimental to the protein stability. Protein modeling studies revealed that the novel mutation identified here decreased the number of ionic interactions by affecting physicochemical parameters of the protein, leading to an overall decrease in protein stability with no major secondary structural changes. CONCLUSION: The molecular analysis further confirms the frequent involvement of LPAR6 in autosomal recessive wooly hair/hypotrichosis, while the bioinformatic study revealed that the missense mutation destabilizes the overall structure of P2RY5 protein.


Genes, Recessive/genetics , Hair Diseases/genetics , Hair/abnormalities , Hypotrichosis/genetics , Receptors, Lysophosphatidic Acid/genetics , Computational Biology , Consanguinity , Female , Humans , Male , Mutation, Missense , Pakistan , Pedigree , Phenotype , Protein Structure, Secondary/genetics , Receptors, Lysophosphatidic Acid/chemistry , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2/genetics , Sequence Homology, Amino Acid
19.
Congenit Anom (Kyoto) ; 59(1): 18-21, 2019 Jan.
Article En | MEDLINE | ID: mdl-29569758

Xeroderma pigmentosum (XP) is a rare autosomal recessive skin disorder characterized by hyperpigmentation, premature skin aging, ocular and cutaneous photosensitivity, and increased risk of skin carcinoma. We investigated seven consanguineous XP families with nine patients from Pakistan. All the Patients exhibited typical clinical symptoms of XP since first year of life. Whole genome SNP genotyping identified a 14 Mb autozygous region segregating with the disease phenotype on chromosome 3p25.1. DNA sequencing of XPC gene revealed a founder homozygous splice site mutation (c.2251-1G>C) in patients from six families (A-F) and a homozygous nonsense mutation (c.1399C>T; p.Gln467*) in patients of family G. This is the first report of XPC mutations, underlying XP phenotype, in Pakistani population.


DNA-Binding Proteins/genetics , Founder Effect , Genome, Human , Mutation , Polymorphism, Single Nucleotide , Xeroderma Pigmentosum/genetics , Base Sequence , Child , Child, Preschool , Chromosomes, Human, Pair 3 , Consanguinity , DNA-Binding Proteins/metabolism , Family , Female , Gene Expression , Homozygote , Humans , Infant , Male , Pakistan , Pedigree , Phenotype , Skin/metabolism , Skin/pathology , Xeroderma Pigmentosum/diagnosis , Xeroderma Pigmentosum/metabolism , Xeroderma Pigmentosum/pathology
...