Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 2(10): 4324-4334, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021447

RESUMEN

Wound healing is a dynamic and complex process that requires a suitable environment to enhance the rapid healing process. In this context, fabrications of nanofibrous materials with antibiotic and antibacterial properties are becoming extremely important. In this present work, we report on the fabrication and characterization of electro-spun cellulose ether-PVA nanofiber mats loaded with halloysite clay (HNT) and gentamicin sulfate (GS) for faster wound healing applications. The morphology of nanofiber mats was examined by SEM and TEM. The average diameter of the nanofiber mats were in the range of 325 ± 30 nm. The physicochemical characterizations were done by FT-IR and XRD, which reveal the presence of HNT and GS into the nanofibers. The incorporation of halloysite gave good mechanical strength to the nanofiber mats. Swelling studies indicated the hydrophilicity of the mats. In vitro studies revealed that HNTs are nontoxic to L929 fibroblast cells and also promote cell growth and proliferation. The antibacterial property of HNT was also studied. The slow release of GS from the nanofiber mats was observed for a period of 18 days. The in vivo wound healing studies on the wistar rats for 21 days revealed the wound healing faster within 2 weeks by the incorporation of HNT and GS into the nanofiber mats and hence these nanofiber mats show great potential in acute and chronic wound healing applications.

2.
Carbohydr Polym ; 181: 175-182, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253960

RESUMEN

The morphology of spin-coated films and electrospun fibers of ethyl hydroxy ethyl cellulose (EHEC), hydrophobically modified ethyl hydroxy ethyl cellulose (HM-EHEC) and their blends with Poly(vinyl alcohol) (PVA) was examined by AFM, SEM and contact angle measurements. These polysaccharides upon blending with PVA exhibited smooth surface which was evidenced by Atomic Force Microscopy (AFM) observation. The electrospinnability of above polysaccharides with PVA was demonstrated for the first time. The oriented fibers could be obtained using a rotating disc collector. Contact angles of spin-coated films and electrospun fibers were discussed in terms of hydrophobicity and wetting characteristics. Further, The nanofibers of EHEC/PVA were in-situ crosslinked using citric acid and were used for controlled release of an antibacterial drug, Chlorhexidine Digluconate (ChD). In-vitro studies of cytotoxicity, cell growth and cell proliferation were performed using L929 mouse fibroblast cells. These nanofiber mats show potential in drug delivery and as scaffolds in tissue engineering applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...