Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919055

RESUMEN

BACKGROUND: Alveolar macrophages (AMs) are resident inflammatory cells in the lung that serve as early sentinels of infection or injury. We have identified thioredoxin reductase 1 inhibition by gold compounds increases activation of nuclear factor erythroid 2-related factor 2 (NRF2)-dependent pathways to attenuate inflammatory responses. The present studies utilized murine alveolar macrophages (MH-S) to test the hypothesis that the gold compound, auranofin (AFN), decreases interleukin (IL)-1ß expression through NRF2-mediated interactions with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway genes and/or increases in glutathione synthesis. METHODS: MH-S cells were treated with AFN and lipopolysaccharide (LPS) and analyzed at 6 and 24 h. The Il1b promoter was analyzed by chromatin immunoprecipitation for direct interaction with NRF2. RESULTS: Expression of IL-1ß, p-IκBα, p-p65 NF-kB, and NOD-, LRR-, and pyrin domain-containing protein 3 were elevated by LPS exposure, but only IL-1ß expression was suppressed by AFN treatment. Both AFN and LPS treatments increased cellular glutathione levels, but attenuation of glutathione synthesis by buthionine sulfoximine (BSO) did not alter expression of Il-1ß. Analysis revealed direct NRF2 binding to the Il1b promoter which was enhanced by AFN and inhibited the transcriptional activity of DNA polymerase II. CONCLUSIONS: Our data demonstrate that AFN-induced NRF2 activation directly suppresses IL-1ß synthesis independent of NFκB and glutathione-mediated antioxidant mechanisms. NRF2 binding to the promoter region of IL1ß directly inhibits transcription of the IL1ß gene. Collectively, our research suggests that gold compounds elicit NRF2-dependent pulmonary protection by suppressing macrophage-mediated inflammation.

2.
Life Sci ; 259: 118285, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798556

RESUMEN

AIMS: Interleukin-1ß (IL-1ß) contributes to the development of bronchopulmonary dysplasia (BPD). Thioredoxin reductase-1 (Txnrd1) inhibition activates nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent responses. Txnrd1 activity is selenium (Se) dependent and Se deficiency is common in prematurity. Auranofin (AFN), a Txnrd1 inhibitor, decreases IL-1ß levels and increases Nrf2 activation in lipopolysaccharide (LPS) treated alveolar macrophages. In lung epithelia, AFN-induced Nrf2 activation is Se dependent. We tested the hypothesis that the effects of Txnrd1 inhibition in alveolar macrophages are Se dependent. MAIN METHODS: To establish Se sufficient (Se+) and deficient (Se-) conditions, alveolar (MH-S) macrophages were cultured in 2.5% fetal bovine serum (FBS) ± 25 nM Na2SeO3. Se- (2.5% FBS) and Se+ (2.5% FBS + 25 nM Na2SeO3) cells were cultured in the presence or absence of 0.05 µg/mL LPS and/or 0.5 µM AFN. Nrf2 activation was determined by measuring NADPH quinone oxidoreductase-1 (Nqo1) and glutathione levels. IL-1ß mRNA (Il1b) and protein levels were measured using qRT-PCR and ELISA. Data were analyzed by ANOVA followed by Tukey's post-hoc. KEY FINDINGS: We detected an independent effect of AFN, but not LPS, on Nqo1 expression and GSH levels in Se+ and Se- cells. LPS significantly increased Il1b and IL-1ß levels in both groups. AFN-mediated attenuation of this effect was not impacted by Se status. SIGNIFICANCE: The beneficial effects of Txnrd1 inhibition in alveolar macrophages are Se-independent and therefore unlikely to be diminished by clinical Se deficiency.


Asunto(s)
Auranofina/farmacología , Macrófagos Alveolares/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Auranofina/metabolismo , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/fisiopatología , Glutatión/metabolismo , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Macrófagos/metabolismo , Macrófagos Alveolares/fisiología , Ratones , Cultivo Primario de Células , Selenio/metabolismo , Selenio/farmacología , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo
3.
Oxid Med Cell Longev ; 2020: 2908271, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587658

RESUMEN

Thioredoxin reductase-1 (TXNRD1) inhibition activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) responses and prevents acute lung injury (ALI). Heme oxygenase-1 (HO-1) induction following TXNRD1 inhibition is Nrf2-dependent in airway epithelial (club) cells in vitro. The influence of club cell HO-1 on lung development and lung injury responses is poorly understood. The present studies characterized the effects of hyperoxia on club cell-specific HO-1 knockout (KO) mice. These mice were generated by crossing Hmox1 flox mice with transgenic mice expressing cre recombinase under control of the club cell-specific Scgb1a1 promoter. Baseline analyses of lung architecture and function performed in age-matched adult wild-type and KO mice indicated an increased alveolar size and airway resistance in HO-1 KO mice. In subsequent experiments, adult wild-type and HO-1 KO mice were either continuously exposed to >95% hyperoxia or room air for 72 h or exposed to >95 hyperoxia for 48 h followed by recovery in room air for 48 h. Injury was quantitatively assessed by calculating right lung/body weight ratios (g/kg). Analyses indicated an independent effect of hyperoxia but not genotype on right lung/body weight ratios in both wild-type and HO-1 KO mice. The magnitude of increases in right lung/body weight ratios was similar in mice of both genotypes. In the recovery model, an independent effect of hyperoxia but not genotype was also detected. In contrast to the continuous exposure model, right lung/body weight ratio mice were significantly elevated in HO-1 KO but not wild-type mice. Though club cell HO-1 does not alter hyperoxic sensitivity in adult mice, it significantly influences lung development and resolution of lung injury following acute hyperoxic exposure.


Asunto(s)
Envejecimiento/patología , Células Epiteliales/enzimología , Eliminación de Gen , Hemo-Oxigenasa 1/metabolismo , Hiperoxia/enzimología , Hiperoxia/patología , Animales , Animales Recién Nacidos , Cruzamientos Genéticos , Células Epiteliales/patología , Femenino , Genotipo , Integrasas/metabolismo , Pulmón/embriología , Lesión Pulmonar/enzimología , Lesión Pulmonar/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Recombinación Genética/genética , Uteroglobina/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1165-L1171, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32292070

RESUMEN

Bronchopulmonary dysplasia (BPD), a long-term respiratory morbidity of prematurity, is characterized by attenuated alveolar and vascular development. Supplemental oxygen and immature antioxidant defenses contribute to BPD development. Our group identified thioredoxin reductase-1 (TXNRD1) as a therapeutic target to prevent BPD. The present studies evaluated the impact of the TXNRD1 inhibitor aurothioglucose (ATG) on pulmonary responses and gene expression in newborn C57BL/6 pups treated with saline or ATG (25 mg/kg ip) within 12 h of birth and exposed to room air (21% O2) or hyperoxia (>95% O2) for 72 h. Purified RNA from lung tissues was sequenced, and differential expression was evaluated. Hyperoxic exposure altered ~2,000 genes, including pathways involved in glutathione metabolism, intrinsic apoptosis signaling, and cell cycle regulation. The isolated effect of ATG treatment was limited primarily to genes that regulate angiogenesis and vascularization. In separate studies, pups were treated as described above and returned to room air until 14 days. Vascular density analyses were performed, and ANOVA indicated an independent effect of hyperoxia on vascular density and alveolar architecture at 14 days. Consistent with RNA-seq analyses, ATG significantly increased vascular density in room air, but not in hyperoxia-exposed pups. These findings provide insights into the mechanisms by which TXNRD1 inhibitors may enhance lung development.


Asunto(s)
Aire , Aurotioglucosa/farmacología , Hiperoxia/patología , Pulmón/irrigación sanguínea , Pulmón/patología , Neovascularización Fisiológica/efectos de los fármacos , Enfermedad Aguda , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , ADN/biosíntesis , Glutatión/metabolismo , Pulmón/efectos de los fármacos , Pulmón/embriología , Ratones Endogámicos C57BL , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/embriología , Alveolos Pulmonares/patología , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos
5.
Neurobiol Aging ; 81: 9-21, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31207469

RESUMEN

The etiology of late-onset Alzheimer's disease is unknown. Recent epidemiological studies suggest that exposure to high levels of ozone (O3) may be a risk factor for late-onset Alzheimer's disease. Nonetheless, whether and how O3 exposure contributes to AD development remains to be determined. In this study, we tested the hypothesis that O3 exposure synergizes with the genetic risk factor APOE ε4 and aging leading to AD, using male apolipoprotein E (apoE)4 and apoE3 targeted replacement mice as men have increased risk exposure to high levels of O3 via working environments and few studies have addressed APOE ε4 effects on males. Surprisingly, our results show that O3 exposure impairs memory in old apoE3, but not old apoE4 or young apoE3 and apoE4, male mice. Further studies show that old apoE4 mice have increased hippocampal activities or expression of some enzymes involved in antioxidant defense, diminished protein oxidative modification, and neuroinflammation following O3 exposure compared with old apoE3 mice. These novel findings highlight the complexity of interactions between APOE genotype, age, and environmental exposure in AD development.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Apolipoproteína E3 , Exposición a Riesgos Ambientales/efectos adversos , Trastornos de la Memoria/etiología , Ozono/efectos adversos , Animales , Apolipoproteína E4 , Genotipo , Masculino , Estrés Oxidativo , Factores de Riesgo
6.
Oxid Med Cell Longev ; 2019: 7945983, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30805084

RESUMEN

BACKGROUND: Aurothioglucose- (ATG-) mediated inhibition of thioredoxin reductase-1 (TXNRD1) improves alveolarization in experimental murine bronchopulmonary dysplasia (BPD). Glutathione (GSH) mediates susceptibility to neonatal and adult oxidative lung injury. We have previously shown that ATG attenuates hyperoxic lung injury and enhances glutathione- (GSH-) dependent antioxidant defenses in adult mice. HYPOTHESIS: The present studies evaluated the effects of TXNRD1 inhibition on GSH-dependent antioxidant defenses in newborn mice in vivo and lung epithelia in vitro. METHODS: Newborn mice received intraperitoneal ATG or saline prior to room air or 85% hyperoxia exposure. Glutamate-cysteine ligase (GCL) catalytic (Gclc) and modifier (Gclm) mRNA levels, total GSH levels, total GSH peroxidase (GPx) activity, and Gpx2 expression were determined in lung homogenates. In vitro, murine transformed club cells (mtCCs) were treated with the TXNRD1 inhibitor auranofin (AFN) or vehicle in the presence or absence of the GCL inhibitor buthionine sulfoximine (BSO). RESULTS: In vivo, ATG enhanced hyperoxia-induced increases in Gclc mRNA levels, total GSH contents, and GPx activity. In vitro, AFN increased Gclm mRNA levels, intracellular and extracellular GSH levels, and GPx activity. BSO prevented AFN-induced increases in GSH levels. CONCLUSIONS: Our data are consistent with a model in which TXNRD1 inhibition augments hyperoxia-induced GSH-dependent antioxidant responses in neonatal mice. Discrepancies between in vivo and in vitro results highlight the need for methodologies that permit accurate assessments of the GSH system at the single-cell level.


Asunto(s)
Antioxidantes/metabolismo , Displasia Broncopulmonar/enzimología , Displasia Broncopulmonar/patología , Glutatión/metabolismo , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Aurotioglucosa , Displasia Broncopulmonar/genética , Células Epiteliales/metabolismo , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión Peroxidasa/metabolismo , Hiperoxia/genética , Hiperoxia/patología , Pulmón/metabolismo , Pulmón/patología , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tiorredoxina Reductasa 1/metabolismo
7.
Physiol Rep ; 7(4): e13977, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30806029

RESUMEN

Endoglin (ENG) regulates signaling by transforming growth factor-ß (TGF-ß), a genetic modifier of cystic fibrosis (CF) lung disease severity. We hypothesized that ENG mediates TGF-ß pathobiology in CF airway epithelia. Comparing CF and non-CF human lungs, we measured ENG by qPCR, immunoblotting and ELISA. In human bronchial epithelial cell lines (16HBE), we used CFTR siRNA knockdown and functional inhibition (CFTRINH -172) to connect loss of CFTR to ENG synthesis. Plasmid overexpression of ENG assessed the direct effect of ENG on TGF-ß transcription and signal amplification in 16HBE cells. We found ENG protein to be increased more than fivefold both in human CF bronchoalveolar fluid (BALF) and human CF lung homogenates. ENG transcripts were increased threefold in CF, with a twofold increase in TGF-ß signaling. CFTR knockdown in 16HBE cells tripled ENG transcription and doubled protein levels with corresponding increases in TGF-ß signaling. Plasmid overexpression of ENG alone nearly doubled TGF-ß1 mRNA and increased TGF-ß signaling in 16HBE cells. These experiments identify that loss of CFTR function increases ENG expression in CF epithelia and amplifies TGF-ß signaling. Targeting ENG may offer a novel therapeutic opportunity to address TGF-ß associated pathobiology in CF.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Fibrosis Quística/metabolismo , Endoglina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular , Células Cultivadas , Niño , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endoglina/genética , Humanos , Transducción de Señal
8.
Redox Biol ; 19: 331-338, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30212802

RESUMEN

The trace element selenium (Se) contributes to redox signaling, antioxidant defense, and immune responses in critically ill neonatal and adult patients. Se is required for the synthesis and function of selenoenzymes including thioredoxin (Trx) reductase-1 (TXNRD1) and glutathione peroxidases (GPx). We have previously identified TXNRD1, primarily expressed by airway epithelia, as a promising therapeutic target to prevent lung injury, likely via nuclear factor E2-related factor 2 (Nrf2)-dependent mechanisms. The present studies utilized the TXNRD1 inhibitor auranofin (AFN) to test the hypothesis that Se positively influences Nrf2 activation and selenoenzyme responses in lung epithelial cells. Murine transformed Club cells (mtCCs) were supplemented with 0, 10, 25, or 100 nM Na2SeO3 to create a range of Se conditions and were cultured in the presence or absence of 0.5 µM AFN. TXNRD1 and GPX2 protein expression and enzymatic activity were significantly greater upon Se supplementation (p < 0.05). AFN treatment (0.5 µM AFN for 1 h) significantly inhibited TXNRD1 but not GPx activity (p < 0.001). Recovery of TXNRD1 activity following AFN treatment was significantly enhanced by Se supplementation (p < 0.041). Finally, AFN-induced Nrf2 transcriptional activation was significantly greater in mtCCs supplemented in 25 or 100 nM Na2SeO3 when compared to non-supplemented controls (p < 0.05). Our novel studies indicate that Se levels positively influence Nrf2 activation and selenoenzyme responses following TXNRD1 inhibition. These data suggest that Se status significantly influences physiologic responses to TXNRD1 inhibitors. In conclusion, correction of clinical Se deficiency, if present, will be necessary for optimal therapeutic effectiveness of TXNRD1 inhibitors in the prevention of lung disease.


Asunto(s)
Pulmón/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Selenio/farmacología , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Animales , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Glutatión Peroxidasa/metabolismo , Pulmón/citología , Pulmón/metabolismo , Ratones , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Tiorredoxina Reductasa 1/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L736-L742, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29368550

RESUMEN

We previously showed that the thioredoxin reductase-1 (TrxR1) inhibitor aurothioglucose (ATG) improves alveolarization in hyperoxia-exposed newborn C3H/HeN mice. Our data supported a mechanism by which the protective effects of ATG are mediated via sustained nuclear factor E2-related factor 2 (Nrf2) activation in hyperoxia-exposed C3H/HeN mice 72 h after ATG administration. Given that inbred mouse strains have differential sensitivity and endogenous Nrf2 activation by hyperoxia, the present studies utilized two C57BL/6 exposure models to evaluate the effects of ATG on lung development and Nrf2 activation. The first model (0-14 days) was used in our C3H/HeN studies and the 2nd model (4-14 days) is well characterized in C57BL/6 mice. ATG significantly inhibited lung TrxR1 activity in both models; however, there was no effect on parameters of alveolarization in C57BL/6 mice. In sharp contrast to C3H/HeN mice, there was no effect of ATG on pulmonary NADPH quinone oxidoreductase-1 ( Nqo1) and heme oxygenase-1 ( Hmox1) at 72 h in either C57BL/6 model. In conclusion, although ATG inhibited TrxR1 activity in the lungs of newborn C57BL/6 mice, effects on lung development and sustained Nrf2-dependent pulmonary responses were blunted. These findings also highlight the importance of strain-dependent hyperoxic sensitivity in evaluation of potential novel therapies.


Asunto(s)
Aurotioglucosa/farmacología , Displasia Broncopulmonar/patología , Regulación de la Expresión Génica/efectos de los fármacos , Pulmón/citología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Alveolos Pulmonares/citología , Tiorredoxina Reductasa 1/metabolismo , Animales , Animales Recién Nacidos , Antirreumáticos/farmacología , Displasia Broncopulmonar/tratamiento farmacológico , Displasia Broncopulmonar/metabolismo , Células Cultivadas , Femenino , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , NAD(P)H Deshidrogenasa (Quinona)/genética , Factor 2 Relacionado con NF-E2/genética , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Tiorredoxina Reductasa 1/genética
10.
Redox Biol ; 9: 57-66, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27393890

RESUMEN

Metabolic control of cellular function is significant in the context of inflammation-induced metabolic dysregulation in immune cells. Generation of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide are one of the critical events that modulate the immune response in neutrophils. When activated, neutrophil NADPH oxidases consume large quantities of oxygen to rapidly generate ROS, a process that is referred to as the oxidative burst. These ROS are required for the efficient removal of phagocytized cellular debris and pathogens. In chronic inflammatory diseases, neutrophils are exposed to increased levels of oxidants and pro-inflammatory cytokines that can further prime oxidative burst responses and generate lipid oxidation products such as 4-hydroxynonenal (4-HNE). In this study we hypothesized that since 4-HNE can target glycolysis then this could modify the oxidative burst. To address this the oxidative burst was determined in freshly isolated healthy subject neutrophils using 13-phorbol myristate acetate (PMA) and the extracellular flux analyzer. Neutrophils pretreated with 4-HNE exhibited a significant decrease in the oxidative burst response and phagocytosis. Mass spectrometric analysis of alkyne-HNE treated neutrophils followed by click chemistry detected modification of a number of cytoskeletal, metabolic, redox and signaling proteins that are critical for the NADPH oxidase mediated oxidative burst. These modifications were confirmed using a candidate immunoblot approach for critical proteins of the active NADPH oxidase enzyme complex (Nox2 gp91phox subunit and Rac1 of the NADPH oxidase) and glyceraldehyde phosphate dehydrogenase, a critical enzyme in the metabolic regulation of oxidative burst. Taken together, these data suggest that 4-HNE-induces a pleiotropic mechanism to inhibit neutrophil function. These mechanisms may contribute to the immune dysregulation associated with chronic pathological conditions where 4-HNE is generated.


Asunto(s)
Aldehídos/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Fagocitosis/efectos de los fármacos , Estallido Respiratorio/efectos de los fármacos , Adulto , Proteínas del Citoesqueleto/metabolismo , Glucólisis/efectos de los fármacos , Voluntarios Sanos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Persona de Mediana Edad , NADPH Oxidasas/metabolismo , Fagocitosis/inmunología , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/inmunología
11.
Am J Respir Cell Mol Biol ; 55(3): 419-28, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27089175

RESUMEN

Oxygen toxicity and antioxidant deficiencies contribute to the development of bronchopulmonary dysplasia. Aurothioglucose (ATG) and auranofin potently inhibit thioredoxin reductase-1 (TrxR1), and TrxR1 disruption activates nuclear factor E2-related factor 2 (Nrf2), a regulator of endogenous antioxidant responses. We have shown previously that ATG safely and effectively prevents lung injury in adult murine models, likely via Nrf2-dependent mechanisms. The current studies tested the hypothesis that ATG would attenuate hyperoxia-induced lung developmental deficits in newborn mice. Newborn C3H/HeN mice were treated with a single dose of ATG or saline within 12 hours of birth and were exposed to either room air or hyperoxia (85% O2). In hyperoxia, ATG potently inhibited TrxR1 activity in newborn murine lungs, attenuated decreases in body weight, increased the transcription of Nrf2-regulated genes nicotinamide adenine dinucleotide phosphate reduced quinone oxidoreductase-1 (NQO1) and heme oxygenase 1, and attenuated alterations in alveolar development. To determine the impact of TrxR1 inhibition on Nrf2 activation in vitro, murine alveolar epithelial-12 cells were treated with auranofin, which inhibited TrxR1 activity, enhanced Nrf2 nuclear levels, and increased NQO1 and heme oxygenase 1 transcription. Our novel data indicate that a single injection of the TrxR1 inhibitor ATG attenuates hyperoxia-induced alterations in alveolar development in newborn mice. Furthermore, our data support a model in which the effects of ATG treatment likely involve Nrf2 activation, which is consistent with our findings in other lung injury models. We conclude that TrxR1 represents a novel therapeutic target to prevent oxygen-mediated neonatal lung injury.


Asunto(s)
Hiperoxia/complicaciones , Hiperoxia/enzimología , Lesión Pulmonar/complicaciones , Lesión Pulmonar/enzimología , Factor 2 Relacionado con NF-E2/metabolismo , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Auranofina/farmacología , Aurotioglucosa/farmacología , Peso Corporal/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Hiperoxia/patología , Lesión Pulmonar/patología , Ratones , Ratones Endogámicos C3H , Morfogénesis/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
12.
Biochim Biophys Acta ; 1840(2): 913-22, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24021887

RESUMEN

BACKGROUND: Redox signaling is an important emerging mechanism of cellular function. Dysfunctional redox signaling is increasingly implicated in numerous pathologies, including atherosclerosis, diabetes, and cancer. The molecular messengers in this type of signaling are reactive species which can mediate the post-translational modification of specific groups of proteins, thereby effecting functional changes in the modified proteins. Electrophilic compounds comprise one class of reactive species which can participate in redox signaling. Electrophiles modulate cell function via formation of covalent adducts with proteins, particularly cysteine residues. SCOPE OF REVIEW: This review will discuss the commonly used methods of detection for electrophile-sensitive proteins, and will highlight the importance of identifying these proteins for studying redox signaling and developing novel therapeutics. MAJOR CONCLUSIONS: There are several methods which can be used to detect electrophile-sensitive proteins. These include the use of tagged model electrophiles, as well as derivatization of endogenous electrophile-protein adducts. GENERAL SIGNIFICANCE: In order to understand the mechanisms by which electrophiles mediate redox signaling, it is necessary to identify electrophile-sensitive proteins and quantitatively assess adduct formation. Strengths and limitations of these methods will be discussed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Asunto(s)
Proteínas/análisis , Proteínas/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Oxidación-Reducción
13.
Front Physiol ; 3: 369, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049513

RESUMEN

There are a wide variety of reactive species which can affect cell function, including reactive oxygen, nitrogen, and lipid species. Some are formed endogenously through enzymatic or non-enzymatic pathways, and others are introduced through diet or environmental exposure. Many of these reactive species can interact with biomolecules and can result in oxidative post-translational modification of proteins. It is well documented that some oxidative modifications cause macromolecular damage and cell death. However, a growing body of evidence suggests that certain classes of reactive species initiate cell signaling by reacting with specific side chains of peptide residues without causing cell death. This process is generally termed "redox signaling," and its role in physiological and pathological processes is a subject of active investigation. This review will give an overview of oxidative protein modification as a mechanism of redox signaling, including types of reactive species and how they modify proteins, examples of modified proteins, and a discussion about the current concepts in this area.

14.
Mol Cell Proteomics ; 9(11): 2545-57, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20823119

RESUMEN

IgA nephropathy (IgAN) is the most common primary glomerulonephritis in the world. Aberrantly glycosylated IgA1, with galactose (Gal)-deficient hinge region (HR) O-glycans, plays a pivotal role in the pathogenesis of the disease. It is not known whether the glycosylation defect occurs randomly or preferentially at specific sites. We have described the utility of activated ion-electron capture dissociation (AI-ECD) mass spectrometric analysis of IgA1 O-glycosylation. However, locating and characterizing the entire range of O-glycan attachment sites are analytically challenging due to the clustered serine and threonine residues in the HR of IgA1 heavy chain. To address this problem, we analyzed all glycoforms of the HR glycopeptides of a Gal-deficient IgA1 myeloma protein, mimicking the aberrant IgA1 in patients with IgAN, by use of a combination of IgA-specific proteases + trypsin and AI-ECD Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS/MS). The IgA-specific proteases provided a variety of IgA1 HR fragments that allowed unambiguous localization of all O-glycosylation sites in the six most abundant glycoforms, including the sites deficient in Gal. Additionally, this protocol was adapted for on-line liquid chromatography (LC)-AI-ECD MS/MS and LC-electron transfer dissociation MS/MS analysis. Our results thus represent a new clinically relevant approach that requires ECD/electron transfer dissociation-type fragmentation to define the molecular events leading to pathogenesis of a chronic kidney disease. Furthermore, this work offers generally applicable principles for the analysis of clustered sites of O-glycosylation.


Asunto(s)
Electrones , Inmunoglobulina A/química , Polisacáridos/química , Secuencia de Aminoácidos , Análisis de Fourier , Glomerulonefritis por IGA/metabolismo , Glicopéptidos/análisis , Glicosilación , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular
15.
Biochemistry ; 47(43): 11285-99, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18826328

RESUMEN

The IgA isotype of human antibodies triggers inflammatory responses via the IgA-specific receptor FcalphaRI (CD89). Structural studies have suggested that IgA1 N-glycans could modulate the interaction with FcalphaRI. We have carried out detailed biophysical analyses of three IgA1 samples purified from human serum and recombinant IgA1-Fc and compared their binding to FcalphaRI. Analytical ultracentrifugation revealed wide variation in the distribution of polymeric species between IgA1 samples, and Fourier transform ion cyclotron resonance mass spectrometry showed overlapping but distinct populations of N-glycan species between IgA1 samples. Kinetic and equilibrium data from surface plasmon resonance experiments revealed that variation in the IgA1 C H2 N-glycans had no effect on the kinetics or affinity constants for binding to FcalphaRI. Indeed, complete enzymatic removal of the IgA1 N-glycans yielded superimposable binding curves. These findings have implications for renal diseases such as IgA nephropathy.


Asunto(s)
Antígenos CD/metabolismo , Inmunoglobulina A/metabolismo , Receptores Fc/metabolismo , Glicosilación , Humanos , Inmunoglobulina A/química , Inmunoglobulina A/inmunología , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...