Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 940: 173543, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38821286

RESUMEN

Despite mounting evidence of their importance in human health and ecosystem functioning, the definition and measurement of 'healthy microbiomes' remain unclear. More advanced knowledge exists on health associations for compounds used or produced by microbes. Environmental microbiome exposures (especially via soils) also help shape, and may supplement, the functional capacity of human microbiomes. Given the synchronous interaction between microbes, their feedstocks, and micro-environments, with functional genes facilitating chemical transformations, our objective was to examine microbiomes in terms of their capacity to process compounds relevant to human health. Here we integrate functional genomics and biochemistry frameworks to derive new quantitative measures of in silico potential for human gut and environmental soil metagenomes to process a panel of major compound classes (e.g., lipids, carbohydrates) and selected biomolecules (e.g., vitamins, short-chain fatty acids) linked to human health. Metagenome functional potential profile data were translated into a universal compound mapping 'landscape' based on bioenergetic van Krevelen mapping of function-level meta-compounds and corresponding functional relative abundances, reflecting imprinted genetic capacity of microbiomes to metabolize an array of different compounds. We show that measures of 'compound processing potential' associated with human health and disease (examining atherosclerotic cardiovascular disease, colorectal cancer, type 2 diabetes and anxious-depressive behavior case studies), and displayed seemingly predictable shifts along gradients of ecological disturbance in plant-soil ecosystems (three case studies). Ecosystem quality explained 60-92 % of variation in soil metagenome compound processing potential measures in a post-mining restoration case study dataset. With growing knowledge of the varying proficiency of environmental microbiota to process human health associated compounds, we might design environmental interventions or nature prescriptions to modulate our exposures, thereby advancing microbiota-oriented approaches to human health. Compound processing potential offers a simplified, integrative approach for applying metagenomics in ongoing efforts to understand and quantify the role of microbiota in environmental- and human-health.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Microbiología del Suelo , Humanos , Microbiota , Metabolismo Energético , Suelo/química
2.
Biol Rev Camb Philos Soc ; 99(1): 295-312, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37813383

RESUMEN

Forest restoration has never been higher on policymakers' agendas. Complex and multi-dimensional arrangements across the urban-rural continuum challenge restorationists and require integrative approaches to strengthen environmental protection and increase restoration outcomes. It remains unclear if urban and rural forest restoration are moving towards or away from each other in practice and research, and whether comparing research outcomes can help stakeholders to gain a clearer understanding of the interconnectedness between the two fields. This study aims to identify the challenges and opportunities for enhancing forest restoration in both urban and rural systems by reviewing the scientific evidence, engaging with key stakeholders and using an urban-rural forest restoration framework. Using the Society for Ecological Restoration's International Principles as discussion topics, we highlight aspects of convergence and divergence between the two fields to broaden our understanding of forest restoration and promote integrative management approaches to address future forest conditions. Our findings reveal that urban and rural forest restoration have convergent and divergent aspects. We emphasise the importance of tailoring goals and objectives to specific contexts and the need to design different institutions and incentives based on the social and ecological needs and goals of stakeholders in different regions. Additionally, we discuss the challenges of achieving high levels of ecological restoration and the need to go beyond traditional ecology to plan, implement, monitor, and adaptively manage restored forests. We suggest that rivers and watersheds could serve as a common ground linking rural and urban landscapes and that forest restoration could interact with other environmental protection measures. We note the potential for expanding the creative vision associated with increasing tree-containing environments in cities to generate more diverse and resilient forest restoration outcomes in rural settings. This study underscores the value of integrative management approaches in addressing future forest conditions across the urban-rural continuum. Our framework provides valuable insights for policymakers, researchers, and decision-makers to advance the field of forest restoration and address the challenges of restoration across the urban-rural continuum. The rural-urban interface serves as a convergence point for forest restoration, and both urban and rural fields can benefit from each other's expertise.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Árboles , Ríos , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...