Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(33): 37587-37594, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35920712

RESUMEN

Spray coating is an industrially mature technique used to deposit thin films that combines high throughput with the ability to coat nonplanar surfaces. Here, we explore the use of ultrasonic spray coating to fabricate perovskite solar cells (PSCs) over rigid, nonplanar surfaces without problems caused by solution dewetting and subsequent "run-off". Encouragingly, we find that PSCs can be spray-coated using our processes onto glass substrates held at angles of inclination up to 45° away from the horizontal, with such devices having comparable power conversion efficiencies (up to 18.3%) to those spray-cast onto horizontal substrates. Having established that our process can be used to create PSCs on surfaces that are not horizontal, we fabricate devices over a convex glass substrate, with devices having a maximum power conversion efficiency of 12.5%. To our best knowledge, this study represents the first demonstration of a rigid, curved perovskite solar cell. The integration of perovskite photovoltaics onto curved surfaces will likely find direct applications in the aerospace and automotive sectors.

3.
Nat Commun ; 12(1): 4938, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426582

RESUMEN

The conversion efficiency of as-deposited, CdTe solar cells is poor and typically less than 5%. A CdCl2 activation treatment increases this to up to 22%. Studies have shown that stacking faults (SFs) are removed and the grain boundaries (GBs) are decorated with chlorine. Thus, SF removal and device efficiency are strongly correlated but whether this is direct or indirect has not been established. Here we explain the passivation responsible for the increase in efficiency but also crucially elucidate the associated SF removal mechanism. The effect of chlorine on a model system containing a SF and two GBs is investigated using density functional theory. The proposed SF removal mechanisms are feasible at the 400 ∘C treatment temperature. It is concluded that the efficiency increase is due to electronic effects in the GBs while SF removal is a by-product of the saturation of the GB with chlorine but is a key signal that sufficient chlorine is present for passivation to occur.

4.
ACS Appl Mater Interfaces ; 13(29): 35086-35096, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264063

RESUMEN

Chlorine passivation treatment of cadmium telluride (CdTe) solar cells improves device performance by assisting electron-hole carrier separation at CdTe grain boundaries. Further improvement in device efficiency is observed after alloying the CdTe absorber layer with selenium. High-resolution secondary ion mass spectroscopy (NanoSIMS) imaging has been used to determine the distribution of selenium and chlorine at the CdTe grain boundaries in a selenium-graded CdTe device. Atomistic modeling based on density functional theory (DFT-1/2) further reveals that the presence of selenium and chlorine at an exemplar (110)/(100) CdTe grain boundary passivates critical acceptor defects and leads to n-type inversion at the grain boundary. The defect state analysis provides an explanation for the band-bending effects observed in the energy band alignment results, thereby elucidating mechanisms for high efficiencies observed in Se-alloyed and Cl-passivated CdTe solar cells.

5.
J Phys Condens Matter ; 32(12): 125702, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31770733

RESUMEN

Recent advancements in CdTe photovoltaic efficiency have come from selenium grading, which reduces the band gap and significantly improves carrier lifetimes. In this work, density functional theory calculations were performed to understand the structural and electronic effects of Se alloying. Special quasirandom structures were used to simulate a random distribution of Se anions. Lattice parameters decrease linearly as Se concentration increases in line with Vegard's Law. The simulated band gap bowing shows strong agreement with experimental values. Selenium, by itself, does not introduce any defect states in the band gap and no significant changes to band structure around the [Formula: see text] point are found. Band offset values suggest a reduction of recombination across the CdSeTe/MgZnO interface at [Formula: see text], which corresponds with the Se concentration used experimentally. Band structure analysis of two cases [Formula: see text] and x = 0.4375, shows a change from dominant Cd/Te contributions in the conduction band minimum to Cd/Se contributions as Se concentration is increased, hinting at a change in optical transition characteristics. Further calculations of optical absorption spectra suggest a reduced transition probability particularly at higher energies, which confirms experimental predictions that Se passivates the non-radiative recombination centres.

6.
ACS Appl Mater Interfaces ; 8(19): 11893-7, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27135679

RESUMEN

Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.

7.
J Phys Condens Matter ; 25(13): 135002, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23455853

RESUMEN

Results are presented for modelling of the evaporation and magnetron sputter deposition of Zn(x)O(y) onto an O-terminated ZnO (0001¯) wurtzite surface. Growth was simulated through a combination of molecular dynamics (MD) and an on-the-fly kinetic Monte Carlo (otf-KMC) method, which finds diffusion pathways and barriers without prior knowledge of transitions. We examine the effects of varying experimental parameters, such as substrate bias, distribution of the deposition species and annealing temperature. It was found when comparing evaporation and sputtering growth that the latter process results in a denser and more crystalline structure, due to the higher deposition energy of the arriving species. The evaporation growth also exhibits more stacking faults than the sputtered growth. Post-annealing at 770 K did not allow complete recrystallization, resulting in films which still had stacking faults where monolayers formed in the zinc blende phase, whereas annealing at 920 K enabled the complete recrystallization of some films to the wurtzite structure. At the latter temperature atoms could also sometimes be locked in the zinc blende phase after annealing. When full recrystallization did not take place, both wurtzite and zinc blende phases were seen in the same layer, resulting in a phase boundary. Investigation of the various distributions of deposition species showed that, during evaporation, the best quality film resulted from a stoichiometric distribution where only ZnO clusters were deposited. During sputtering, however, the best quality film resulted from a slightly O rich distribution. Two stoichiometric distributions, one involving mainly ZnO clusters and the other involving mainly single species, showed that the distribution of deposition species makes a huge impact on the grown film. The deposition of predominantly single species causes many more O atoms at the surface to be sputtered or reflected, resulting in an O deficiency of up to 18% in the deposited film and therefore resulting in more stacking faults and phase boundaries. The methods used allow analysis of key mechanisms that occur during the growth process and give hints as to the optimum conditions under which complete crystalline layers can form.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA