Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 96
1.
RSC Adv ; 14(25): 17507-17518, 2024 May 28.
Article En | MEDLINE | ID: mdl-38818361

Water pollution is a global environmental issue, and the presence of pharmaceutical compounds, such as tetracyclines (TCs), in aquatic ecosystems has raised growing concerns due to the potential risks to both the environment and human health. A high surface area CeO2 was prepared via atmospheric thermal treatment of a metal-organic framework of cerium and benzene-1,3,5-tricarboxylate. The effects of calcination temperature on the morphology, structure, light absorption properties and tetracycline removal efficiency were studied. The best activity of the photocatalysts could be achieved when the heat treatment temperature is 300 °C, which enhances the photocatalytic degradation performance towards tetracycline under visible light. The resulting CeO2 particles have high capacity for adsorbing TCs from aqueous solution: 90 mg g-1 for 60 mg L-1 TCs. As a result, 98% of the initial TC can be removed under simulated sunlight irradiation. The cooperation of moderate defect concentration and disordered structure showed tetracycline removal activity about 10 times higher than the initial Ce-MOF. An embryotoxicity assessment on zebrafish revealed that treatment with CeO2 particles significantly decreased the toxicity of TC solutions.

2.
Inorg Chem ; 63(20): 9184-9194, 2024 May 20.
Article En | MEDLINE | ID: mdl-38722234

We report a new nickel hydroxyfluoride diaspore Ni(OH)F prepared using hydrothermal synthesis from NiCl2·6H2O and NaF. Magnetic characterization reveals that, contrary to other reported transition-metal hydroxyfluoride diaspores, Ni(OH)F displays weak ferromagnetism below the magnetic ordering temperature. To understand this difference, neutron diffraction is used to determine the long-range magnetic structure. The magnetic structure is found to be distinct from those reported for other hydroxyfluoride diaspores and shows an antiferromagnetic spin ordering in which ferromagnetic canting is allowed by symmetry. Furthermore, neutron powder diffraction on a deuterated sample, Ni(OD)F, reveals partial anion ordering that is distinctive to what has previously been reported for Co(OH)F and Fe(OH)F. Density functional theory calculations show that OH/F ordering can have a directing influence on the lowest energy magnetic ground state. Our results point toward a subtle interplay between the sign of magnetic exchange interactions, the electronic configuration, and anion disordering.

3.
ACS Appl Nano Mater ; 7(9): 10120-10129, 2024 May 10.
Article En | MEDLINE | ID: mdl-38752019

Nanostructured niobium-titanium carbonitrides, (Nb,Ti)C1-xNx, with the cubic-rock salt structure are prepared without the use of reactive gases via thermal treatment (700-1200 °C) under nitrogen of mixtures of guanidine carbonate and ammonium niobate (V) oxalate hydrate, with addition of ammonium titanyl oxalate monohydrate as a titanium source. The bulk structure and chemical composition of the materials are characterized using powder X-ray diffraction (XRD) and powder neutron diffraction, elemental homogeneity is studied using energy dispersive spectroscopy (EDS) mapping using transmission electron microscopy (TEM), and surface chemical analysis is examined using X-ray photoelectron spectroscopy (XPS). Nanoscale crystallites of between 10 and 50 nm are observed by TEM, where EDS reveals the homogeneity of metal distribution for the mixed-metal materials. Titanium carbonitrides are found to be air sensitive, reacting with air under ambient conditions, while titanium-niobium carbonitrides are found to degrade in aqueous sulfuric acid. The niobium carbonitrides, however, show some stability toward acidic solutions. Materials are produced with composition NbC1-xNx with x between 0.35 and 0.45, and more carbon-rich materials (x ≈ 0.35) are found as the synthesis temperature is increased, as proven by Rietveld refinement of crystal structure against powder neutron diffraction data. Despite phase purity seen by diffraction and negligible bulk carbon content, XPS shows a complex surface chemistry for the NbC1-xNx materials, with evidence for Nb2O5-like oxide species in a carbon-rich environment. The NbC1-xNx prepared at 900 °C has a surface area around 50 m2 g-1, making it suitable as a catalyst support. Loading with iridium provides a material active for the oxygen evolution reaction in 0.1 M sulfuric acid, with minimal leaching of either Nb or Ir after 1000 cycles.

4.
Small Methods ; : e2301703, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38461543

The crystal structures of four coordination polymers constructed from Sn(II) and polydentate carboxylate ligands are reported. All are prepared under hydrothermal conditions in KOH or LiOH solutions (either water or methanol-water) at 130-180 °C and crystallize as small crystals, microns or less in size. Single-crystal structure solution and refinement are performed using synchrotron X-ray diffraction for two materials and using 3D electron diffraction (3DED) for the others. Sn2 (1,3,5-BTC)(OH), where 1,3,5-BTC is benzene-1,3,5-tricarboxylate, is a new polymorph of this composition and has a three-dimensionally connected structure with potential for porosity. Sn(H-1,3,5-BTC) retains a partially protonated ligand and has a 1D chain structure bound by hydrogen bonding via ─COOH groups. Sn(H-1,2,4-BTC) contains an isomeric ligand, benzene-1,2,4-tricarboxylate, and contains inorganic chains in a layered structure held by hydrogen bonding. Sn2 (DOBDC), where DOBDC is 2,5-dioxido-benzene-1,4-dicarboxylate, is a new polymorph for this composition and has a three-dimensionally connected structure where both carboxylate and oxido groups bind to the tin centers to create a dense network with dimers of tin. In all materials, the Sn centers are found in highly asymmetric coordination, as expected for Sn(II). For all materials phase purity of the bulk is confirmed using powder X-ray diffraction, thermogravimetric analysis, and infrared spectroscopy.

5.
Chem Sci ; 15(12): 4374-4385, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38516069

We report the first synthesis of the mixed-metal chabazite-type AlxGa1-xPO4-34(mim) solid solution, containing 1-methylimidazolium, mim, as structure directing agent (SDA), from the parent mixed-metal oxide solid solution, γ-(AlxGa1-x)2O3. This hitherto unreported family of materials exhibits complex disorder, arising from the possible distributions of cations over available sites, the orientation of the SDA and the presence of variable amounts of water, which provides a prototype for understanding structural subtleties in nanoporous materials. In the as-made forms of the phosphate frameworks, there are three crystallographically distinct metal sites: two tetrahedral MO4 and one octahedral MO4F2 (M = Al, Ga). A combination of solid-state NMR spectroscopy and periodic DFT calculations reveals that the octahedral site is preferentially occupied by Al and the tetrahedral sites by Ga, leading to a non-random distribution of cations within the framework. Upon calcination to the AlxGa1-xPO4-34 framework, all metal sites are tetrahedral and crystallographically equivalent in the average R3̄ symmetry. The cation distribution was explored by 31P solid-state NMR spectroscopy, and it is shown that the non-random distribution demonstrated to exist in the as-made materials would be expected to give remarkably similar patterns of peak intensities to a random distribution owing to the change in average symmetry in the calcined materials.

6.
Chem Commun (Camb) ; 59(90): 13502-13505, 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37882454

A Mn2+-Li-Nb disordered rock-salt oxide cathode is prepared by a solid-state reaction under 5% H2/N2, and its electrochemical property shows a high voltage plateau at 4.8 V, with irreversible structural changes in the 1st cycle due to O redox processes; this is supported by powder X-ray diffraction and ex situ laboratory Mn K-edge XANES data.

7.
Chem Commun (Camb) ; 59(76): 11393-11396, 2023 Sep 21.
Article En | MEDLINE | ID: mdl-37668052

Control of phase separation of VO43- and rare earth precursors in reverse microemulsions afforded ∼35 nm YVO4 nanoparticles with functionalisable ∼7 ± 3 nm nanopores. Doping by Eu3+ allowed luminescent probing of interfacial crystallisation while xylenol orange absorption showed molecular encapsulation in particle cavities. This provides potential multifunctional systems combining UV-Vis-NIR luminescence and (photo)active molecules for optical sensing.

8.
Dalton Trans ; 52(32): 11143-11157, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37496421

An unprecedented synthesis method is used to form a series of Ce-UiO-66-X (X = NH2, OH, H, NO2, COOH) metal-organic frameworks by precipitation from mixed solvents, with instantaneous crystallisation on combining separate solutions of ligands and metal precursors. This allows the first direct synthesis of Ce-UiO-66-OH. Powder X-ray diffraction (PXRD) shows that all materials are pure phase with a broadened profile that indicates nano-scale crystallite domain size. The effect of different functional groups on the benzene-1,4-dicarboxylate linker within the UiO-66 structure has been investigated on degradation of two cationic (methylene blue and rhodamine B) and two anionic (Congo red, and Alizarin red S) dyes under UV and visible light irradiation at room temperature. Analysis of the dye adsorption in the absence of light is accounted for using pseudo-first order kinetics, and the Ce-UiO-66-NH2, Ce-UiO-66-OH, and Ce-UiO-66-H materials display a considerable photocatalytic activity to degrade Alizarin red S and Congo red rapidly between 1 and 3 minutes. The materials show excellent photostability and recyclability under UV and visible light, with no loss of crystallinity seen by PXRD and activity maintained over 5 cycles, with 16 hours photostability for Ce-UiO-66-NH2.

9.
Inorg Chem ; 62(11): 4503-4513, 2023 Mar 20.
Article En | MEDLINE | ID: mdl-36877753

The crystallization of a new series of A-site substituted lanthanum ferrite materials (La1-xREx)FeO3 was explored by the hydrothermal method at 240 °C, for rare earth (RE) = Nd, Sm, Gd, Ho, Er, Yb, and Y, with 0 ≤ x ≤ 1. The effect of elemental substitution on the morphological, structural, and magnetic properties of the materials was studied using high-resolution powder X-ray diffraction, energy dispersive spectroscopy (EDS) on the scanning electron microscope, Raman spectroscopy, and SQUID magnetometry. If the radius of the La3+ and the substituent ions is similar, such as for Nd3+, Sm3+, and Gd3+, homogeneous solid solutions are formed, with the orthorhombic GdFeO3-type structure, and a continuous evolution of Raman spectra with composition and distinct magnetic behavior from the end members. When the radius difference between substituents and La3+ is large, such as for Ho3+, Er3+, Yb3+, and Y3+, then instead of forming solid solutions, crystallization in separate phases is found. However, low levels of element mixing are found and intergrowths of segregated regions give composite particles. In this case, the Raman spectra and magnetic behavior are characteristic of mixtures of phases, while EDS shows distinctive elemental segregation. A-site replacement induces an evolution in the crystallite shape with an increasing amount of substituent ions and this is most evident for RE = Y from cube-shaped crystals seen for LaFeO3 to multipodal crystals for (La1-xYx)FeO3, providing evidence for a phase-separation-driven evolution of morphology.

10.
Adv Mater ; 35(10): e2208575, 2023 Mar.
Article En | MEDLINE | ID: mdl-36528852

Halide perovskite structures are revolutionizing the design of optoelectronic materials, including solar cells, light-emitting diodes, and photovoltaics when formed at the quantum scale. Four isolated sub-nanometer, or picoscale, halide perovskite structures formed inside ≈1.2-1.6 nm single-walled carbon nanotubes (SWCNTs) by melt insertion from CsPbBr3 and lead-free CsSnI3 are reported. Three directly relate to the ABX3 perovskite archetype while a fourth is a perovskite-like lamellar structure with alternating Cs4 and polyhedral Sn4 Ix layers. In ≈1.4 nm-diameter SWCNTs, CsPbBr3 forms Cs3 PbII Br5 nanowires, one ABX3 unit cell in cross section with the Pb2+ oxidation state maintained by ordered Cs+ vacancies. Within ≈1.2 nm-diameter SWCNTs, CsPbBr3 and CsSnI3 form inorganic-polymer-like bilayer structures, one-fourth of an ABX3 unit cell in cross section with systematically reproduced ABX3 stoichiometry. Producing these smallest halide perovskite structures at their absolute synthetic cross-sectional limit enables quantum confinement effects with first-principles calculations demonstrating bandgap widening compared to corresponding bulk structural forms.

11.
Inorg Chem ; 61(46): 18536-18544, 2022 Nov 21.
Article En | MEDLINE | ID: mdl-36354759

CO2 epoxidation to cyclic carbonates under mild, solvent-free conditions is a promising pathway toward sustainable CO2 utilization. Metal-organic frameworks (MOFs) explored for such applications so far are commonly composed of nonrenewable ligands such as benzene dicarboxylate (BDC) or synthetically complex linkers and therefore are not suitable for commercial utilization. Here, we report new yttrium 2,5-furandicarboxylate (FDC)-based MOFs: "UOW-1" and "UOW-2" synthesized via solvothermal assembly, with the former having a unique structural topology. The FDC linker can be derived from biomass and is a green and sustainable alternative to conventionally used BDC ligands, which are sourced exclusively from fossil fuels. UOW-1, owing to unique coordination unsaturation and a high density of Lewis active sites, promotes a high catalytic activity (∼100% conversion; ∼99% selectivity), a high turnover frequency (70 h-1), and favorable first-order kinetics for CO2 epoxidation reactions using an epichlorohydrin model substrate under solvent-free conditions within 6 h and a minimal cocatalyst amount. A systematic catalytic study was carried out by broadening the epoxide substrate scope to determine the influence of electronic and steric factors on CO2 epoxidation. Accordingly, higher conversion efficiencies were observed for substrates with high electrophilicity on the carbon center and minimal steric bulk. The work presents the first demonstration of sustainable FDC-based MOFs used for efficient CO2 utilization.

12.
Nano Lett ; 22(9): 3569-3575, 2022 May 11.
Article En | MEDLINE | ID: mdl-35439016

Terbium-doped YVO4 has been considered a nonluminescent solid since the first classic studies on rare-earth-doped phosphors in the 1960s. However, we demonstrate that defect engineering of YVO4:Tb3+ nanoparticles overcomes the metal-metal charge transfer (MMCT) process which is responsible for the quenching of the Tb3+ luminescence. Tetragonal (Y1-xTbx)VO4 nanoparticles obtained by colloidal precipitation showed expanded unit cells, high defect densities, and intimately mixed carbonates and hydroxides, which contribute to a shift of the MMCT states to higher energies. Consequently, we demonstrate unambiguously for the first time that Tb3+ luminescence can be excited by VO43- → Tb3+ energy transfer and by direct population of the 5D4 state in YVO4. We also discuss how thermal treatment removes these effects and shifts the quenching MMCT state to lower energies, thus highlighting the major consequences of defect density and microstructure in nanosized phosphors. Therefore, our findings ultimately show nanostructured YVO4:Tb3+ can be reclassified as a UV-excitable luminescent material.

13.
Chemistry ; 28(19): e202200410, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-35157353

The yttrium organic framework (Y0.89 Tb0.10 Eu0.01 )6 (BDC)7 (OH)4 (H2 O)4 (BDC=benzene-1,4-dicarboxylate) is hydrothermally stable up to at least 513 K and thermally stable in air in excess of 673 K. The relative intensities of luminescence of Tb3+ and Eu3+ are governed by Tb3+ -to-Eu3+ phonon-assisted energy transfer and Tb3+ -to-ligand back transfer and are responsible for the differing temperature-dependent luminescence of the two ions. This provides a ratiometric luminescent thermometer in the 288-573 K temperature range, not previously seen for MOF materials, with a high sensitivity, 1.69±0.04 % K-1 at 523 K. In aqueous conditions, loosely bound H2 O can be replaced by D2 O in the same material, which modifies decay lifetimes to yield a quantitative luminescent D2 O sensor with a useful sensitivity for practical application.

14.
Dalton Trans ; 51(1): 145-155, 2021 Dec 20.
Article En | MEDLINE | ID: mdl-34870659

The synthesis of three coordination polymers of cerium(III) and the ligand pyridine-2,4,6-tricarboxylate (PTC) is reported. Two of the materials crystallise under hydrothermal conditions at 180 °C, with [Ce(PTC)(H2O)2]·1.5H2O, (1), being formed on extended periods of reaction time, 3 days or longer, and Ce(PTC)(H2O)3, (2), crystallising after 1 day. Both phases contain Ce(III) but are prepared using the Ce(IV) salt Ce(SO4)2·4H2O as reagent. Under solvothermal conditions (mixed water-N,N-dimethylformamide (DMF)), the phase [Ce(PTC)(H2O)(DMF)]·H2O (3) is crystallised. The structures of the three materials are resolved by single crystal X-ray diffraction, with the phase purity of the samples determined by powder X-ray diffraction and thermogravimetric analysis. (1) is constructed from helical chains cross-linked by the PTC linkers to give a three-dimensional structure that contains clusters of water molecules in channels that are hydrogen-bonded to each other and to additional waters that are coordinated to cerium. (2) also contains nine-coordinate cerium but these are linked to give a dense framework, in which water is directly coordinated to cerium. (3) contains corner-shared nine-coordinate cerium centres, linked to give a framework in which Ce-coordinated DMF fills space. Upon heating the material (1) in air all water is irreversibly lost to give a poorly crystalline anhydrous phase Ce(PTC), as deduced from X-ray thermodiffractometry and thermogravimetric analysis. The material (1), however, is hydrothermally stable, and is also stable under oxidising conditions, where immersion in 30% H2O2 gives no loss in crystallinity. Oxidation of around 50% of surface Ce to the +4 oxidation state is thus possible, as evidenced by X-ray photoelectron spectroscopy, which is accompanied by a colour change from yellow to orange. Photocatalytic activity of (1) is screened and the material shows effective degradation of methyl orange.

15.
Nanomaterials (Basel) ; 11(6)2021 Jun 10.
Article En | MEDLINE | ID: mdl-34200843

Iridium-containing NaTaO3 is produced using a one-step hydrothermal crystallisation from Ta2O5 and IrCl3 in an aqueous solution of 10 M NaOH in 40 vol% H2O2 heated at 240 °C. Although a nominal replacement of 50% of Ta by Ir was attempted, the amount of Ir included in the perovskite oxide was only up to 15 mol%. The materials are formed as crystalline powders comprising cube-shaped crystallites around 100 nm in edge length, as seen by scanning transmission electron microscopy. Energy dispersive X-ray mapping shows an even dispersion of Ir through the crystallites. Profile fitting of powder X-ray diffraction (XRD) shows expanded unit cell volumes (orthorhombic space group Pbnm) compared to the parent NaTaO3, while XANES spectroscopy at the Ir LIII-edge reveals that the highest Ir-content materials contain Ir4+. The inclusion of Ir4+ into the perovskite by replacement of Ta5+ implies the presence of charge-balancing defects and upon heat treatment the iridium is extruded from the perovskite at around 600 °C in air, with the presence of metallic iridium seen by in situ powder XRD. The highest Ir-content material was loaded with Pt and examined for photocatalytic evolution of H2 from aqueous methanol. Compared to the parent NaTaO3, the Ir-substituted material shows a more than ten-fold enhancement of hydrogen yield with a significant proportion ascribed to visible light absorption.

16.
Nanoscale ; 13(9): 4931-4945, 2021 Mar 07.
Article En | MEDLINE | ID: mdl-33629083

We show that particle size, morphology, nanocrystallinity, surface area, and defect density of (Y,Eu)VO4 structures can be tuned by one-pot colloidal conversion of rare earth hydroxycarbonates in water/ethylene glycol (EG) suspensions. Using small angle X-ray scattering, transmission electron microscopy and dynamic light scattering, we show how volume fractions of EG direct the amorphous to crystalline conversion at 1 atm/95 °C by controlling size and aggregation of hydroxycarbonate precursors. A template effect due to a Kirkendall-type conversion occurs for low EG contents, yielding solids with high densities of oxygen defects, as demonstrated by O2 uptakes in thermogravimetry and X-ray photoelectron spectroscopy profiles. Starting from small and aggregated hydroxycarbonates high-porosity (Y,Eu)VO4 nanoparticles were produced with expanded unit cells and short-range (<100 Å) crystalline ordering. We explored the effects of synthesis on the textural, microstructure, and defects of (Y,Eu)VO4 solids, which were further correlated to the spectroscopic profiles of Eu3+-activated samples. We show that the ratios between Eu3+ 5D0 internal quantum yields and particle diameters can be directly correlated to the particle surface areas, opening new perspectives for theoretical detailing of f-f luminescence in YVO4 solids, and enabling accurate tuning of structure and applicability of colloidal vanadate nanoparticles for sensing and catalysis applications.

17.
Dalton Trans ; 49(42): 14871-14880, 2020 Nov 03.
Article En | MEDLINE | ID: mdl-33073797

The cerium(iii) hydroxide chloride Ce(OH)2Cl crystallises directly as a polycrystalline powder from a solution of CeCl3·7H2O in poly(ethylene) glycol (Mn = 400) heated at 240 °C and is found to be isostructural with La(OH)2Cl, as determined from high-resolution synchrotron powder X-ray diffraction (P21/m, a = 6.2868(2) Å, b = 3.94950(3) Å, c = 6.8740(3) Å, ß = 113.5120(5)°). Replacement of a proportion of the cerium chloride in synthesis by a second lanthanide chloride yields a set of materials Ce1-xLnx(OH)2Cl for Ln = La, Pr, Gd, Tb. For La the maximum value of x is 0.2, with an isotropic expansion of the unit cell, but for the other lanthanides a wider composition range is possible, and the lattice parameters show an isotropic contraction with increasing x. Thermal decomposition of the hydroxide chlorides at 700 °C yields mixed-oxides Ce1-xLnxO2-δ that all have cubic fluorite structures with either expanded (Ln = La, Gd) or contracted (Ln = Pr, Tb) unit cells compared to CeO2. Scanning electron microscopy shows a shape memory effect in crystal morphology upon decomposition, with clusters of anisotropic sub-micron crystallites being seen in the precursor and oxide products. The Pr- and Tb-substituted oxides contain the substituent in a mixture of +3 and +4 oxidation states, as seen by X-ray absorption near edge structure spectroscopy at the lanthanide LIII edges. The mixed oxide materials are examined using temperature programmed reduction in 10%H2 in N2, which reveals redox properties suitable for heterogeneous catalysis, with the Pr-substituted materials showing the greatest reducibility at lower temperature.

18.
Inorg Chem ; 59(16): 11616-11626, 2020 Aug 17.
Article En | MEDLINE | ID: mdl-32799506

We present an NMR crystallographic investigation of two as-made forms of the recently characterized gallophosphate GaPO-34A, which has an unusual framework composition with a Ga:P ratio of 7:6 and contains both hydroxide and fluoride anions and either 1-methylimidazolium or pyridinium as the structure-directing agent. We combine previously reported X-ray crystallographic data with solid-state NMR spectroscopy and periodic density functional theory (DFT) calculations to show that the structure contains at least three distinct types of disorder (occupational, compositional, and dynamic). The occupational disorder arises from the presence of six anion sites per unit cell, but a total occupancy of five of these, leading to full occupancy of four sites and partial occupancy of the fifth and sixth (which are related by symmetry). The mixture of OH and F present leads to compositional disorder on the occupied anion sites, although the occupancy of some sites by F is calculated to be energetically unfavorable and signals relating to F on these sites are not observed by NMR spectroscopy, confirming that the compositional disorder is not random. Finally, a combination of high-field 71Ga NMR spectroscopy and variable-temperature 13C and 31P NMR experiments shows that the structure directing agents are dynamic on the microsecond time scale, which can be supported by averaging the 31P chemical shifts calculated with the SDA in different orientations. This demonstrates the value of an NMR crystallographic approach, particularly in the case of highly disordered crystalline materials, where the growth of large single crystals for conventional structure determination may not be possible owing to the extent of disorder present.

19.
Chem Commun (Camb) ; 56(70): 10159-10162, 2020 Sep 11.
Article En | MEDLINE | ID: mdl-32744549

Zirconium tetramandelate (2-hydroxy-2-phenylacetate) has been used for selective gravimetric analysis of zirconium for over 70 years. Herein its crystal structure is reported from synchrotron powder X-ray diffraction and 13C solid-state NMR. The complex is a rare example of isolated zirconium cations, rather than the clusters prevalent in aqueous solutions.

20.
Angew Chem Int Ed Engl ; 59(44): 19696-19701, 2020 Oct 26.
Article En | MEDLINE | ID: mdl-32633454

Achieving control over the size distribution of metal-organic-framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST-1, is achieved using a nanopipette injection method to locally mix Cu2+ salt precursor and benzene-1,3,5-tricarboxylate (BTC3- ) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST-1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC3- . These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.

...