Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Genet ; 38(6): 299-306, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11270571

RESUMEN

The protein kinase Chk1 is required in the fission yeast Schizosaccharomyces pombe for delaying cell cycle progression in response to DNA damage. Chk1 becomes phosphorylated when DNA is damaged by a variety of agents, including the anti-tumor drug camptothecin. To further characterize the behavior of Chk1 in response to DNA damage, we used PCR-based mutagenesis of the chk1 gene coupled with in vivo gap repair to generate mutant alleles. Of 44 chk1 mutants recovered, six encode full-length proteins that confer a DNA damage-sensitive phenotype. All of the alleles render cells checkpoint-defective, but confer subtle differences in sensitivity to camptothecin or UV light. Mutant alleles were sequenced and served to identify regions of the protein that are critical for checkpoint function.


Asunto(s)
Proteínas de Ciclo Celular , Mutación , Proteínas Nucleares , Mutación Puntual/efectos de los fármacos , Proteínas Quinasas/genética , Schizosaccharomyces/genética , Alelos , Secuencia de Aminoácidos , Camptotecina/farmacología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Secuencia Conservada , Daño del ADN , Replicación del ADN , Genes Fúngicos , Genes cdc , Genotipo , Hidroxiurea/farmacología , Datos de Secuencia Molecular , Fenotipo , Fosforilación , Proteínas Tirosina Quinasas/genética , Proteínas de Schizosaccharomyces pombe , Rayos Ultravioleta
2.
Curr Opin Genet Dev ; 11(1): 78-82, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11163155

RESUMEN

Control of mitotic entry is a component of the checkpoint response that contributes to cell survival following DNA damage. In some eukaryotic cells, mitotic entry relies heavily on regulation of the state of tyrosine phosphorylation of the cyclin-dependent kinase Cdc2. Evidence that checkpoint regulation of cell-cycle progression operates through controlling the state of Cdc2 tyrosine phosphorylation exists. Whether other targets of the checkpoint pathway could play important roles in the response to DNA damage is a subject of ongoing investigations.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Daño del ADN/genética , Genes cdc , Proteínas Quinasas/metabolismo , Fosfatasas cdc25/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteínas Fúngicas/metabolismo , Humanos , Mitosis , Levaduras/genética , Levaduras/metabolismo , ras-GRF1/metabolismo
3.
Curr Opin Cell Biol ; 12(6): 697-704, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11063934

RESUMEN

In response to DNA damage, cell-cycle checkpoints integrate cell-cycle control with DNA repair. The idea that checkpoint controls are an integral component of normal cell-cycle progression has arisen as a result of studies in Drosophila and mice. In addition, an appreciation that DNA damage arises as a natural consequence of cellular metabolism, including DNA replication itself, has influenced thinking regarding the nature of checkpoint pathways.


Asunto(s)
Proteínas de Ciclo Celular , Ciclo Celular/fisiología , Genes cdc/fisiología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Transformación Celular Neoplásica/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN , Drosophila , Embrión de Mamíferos/enzimología , Embrión de Mamíferos/patología , Embrión no Mamífero/enzimología , Embrión no Mamífero/patología , Predisposición Genética a la Enfermedad , Ratones , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor
4.
Trends Cell Biol ; 10(7): 296-303, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10856933

RESUMEN

DNA damage causes cell-cycle delay before S phase, during replication and before mitosis. This involves a number of highly conserved proteins that sense DNA damage and signal the cell-cycle machinery. Kinases that were initially discovered in yeast model systems have recently been shown to regulate the regulators of cyclin-dependent kinases and to control the stability of p53. This shows the importance of checkpoint proteins for maintaining genome stability. Here, we discuss recent data from yeast and metazoans that suggest a remarkable conservation of the organization of the G2 DNA-damage checkpoint pathway.


Asunto(s)
Fenómenos Fisiológicos Celulares , Daño del ADN/fisiología , Fase G2/fisiología , Animales
5.
Yeast ; 15(10A): 821-8, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10407262

RESUMEN

The protein kinase Chk1 is essential for the DNA damage checkpoint. Cells lacking Chk1 are hypersensitive to DNA-damaging agents such as UV light and gamma-irradiation because they fail to arrest the cell cycle when DNA damage is generated. Phosphorylation of Chk1 occurs after DNA damage and is dependent on the integrity of the DNA damage checkpoint pathway. We have tested whether a topoisomerase I inhibitor, camptothecin (CPT), generates DNA damage in the fission yeast Schizosaccharomyces pombe that results in Chk1 phosphorylation. We demonstrate that Chk1 is phosphorylated in response to CPT treatment in a time- and dose-dependent manner and that phosphorylation is dependent on an intact DNA damage checkpoint pathway. Furthermore, we show that cells must be actively dividing in order for CPT to generate a Chk1-responsive DNA damage signal. This observation is consistent with a model whereby the cytotoxic event caused by CPT treatment is the production of a DNA double-strand break resulting from the collision of a DNA replication fork with a trapped CPT-topoisomerase I cleavable complex. Cells lacking Chk1 are hypersensitive to CPT treatment, suggesting that the DNA damage checkpoint pathway can be an important determinant for CPT sensitivity or resistance. Finally, as a well-characterized, soluble agent that specifically causes DNA damage, CPT will allow a biochemical analysis of the checkpoint pathway that responds to DNA damage.


Asunto(s)
Camptotecina/farmacología , Daño del ADN , Inhibidores Enzimáticos/farmacología , Proteínas Quinasas/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , Inhibidores de Topoisomerasa I , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN de Hongos/efectos de los fármacos , ADN de Hongos/metabolismo , ADN de Hongos/efectos de la radiación , Genes Fúngicos , Mutación , Fosforilación , Proteínas Quinasas/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe , Transducción de Señal
6.
Genes Dev ; 13(6): 675-85, 1999 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10090724

RESUMEN

The protein kinase Chk1 is required for cell cycle arrest in response to DNA damage. We have found that the 14-3-3 proteins Rad24 and Rad25 physically interact with Chk1 in fission yeast. Association of Chk1 with 14-3-3 proteins is stimulated in response to DNA damage. DNA damage results in phosphorylation of Chk1 and the 14-3-3 proteins bind preferentially to the phosphorylated form. Genetic analysis has independently implicated both Rad24 and Rad25 in the DNA-damage checkpoint pathway. We suggest that DNA damage-dependent association of phosphorylated Chk1 with 14-3-3 proteins mediates an important step along the DNA-damage checkpoint pathway, perhaps by directing Chk1 to a particular substrate or to a particular location within the cell. An additional role for 14-3-3 proteins in the DNA-damage checkpoint has been suggested based on the observation that human Chk1 can phosphorylate Cdc25C in vitro creating a 14-3-3 binding site. Our results suggest that in fission yeast the interaction between the 14-3-3 proteins and Cdc25 does not require Chk1 function and is unaffected by DNA damage, in sharp contrast to the interaction between the 14-3-3 proteins and Chk1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Daño del ADN , ADN Helicasas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe , Secuencia de Bases , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cartilla de ADN , Humanos , Péptidos y Proteínas de Señalización Intracelular , Fosforilación , Unión Proteica , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología
8.
Science ; 271(5247): 353-6, 1996 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-8553071

RESUMEN

Exposure of eukaryotic cells to agents that generate DNA damage results in transient arrest of progression through the cell cycle. In fission yeast, the DNA damage checkpoint associated with cell cycle arrest before mitosis requires the protein kinase p56chk1. DNA damage induced by ultraviolet light, gamma radiation, or a DNA-alkylating agent has now been shown to result in phosphorylation of p56chk1. This phosphorylation decreased the mobility of p56chk1 on SDS-polyacrylamide gel electrophoresis and was abolished by a mutation in the p56chk1 catalytic domain, suggesting that it might represent autophosphorylation. Phosphorylation of p56chk1 did not occur when other checkpoint genes were inactive. Thus, p56chk1 appears to function downstream of several of the known Schizosaccharomyces pombe checkpoint gene products, including that encoded by rad3+, a gene with sequence similarity to the ATM gene mutated in patients with ataxia telangiectasia. The phosphorylation of p56chk1 provides an assayable biochemical response to activation of the DNA damage checkpoint in the G2 phase of the cell cycle.


Asunto(s)
Daño del ADN , Fase G2 , Mitosis , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Schizosaccharomyces/citología , Adenosina Trifosfatasas/genética , Proteínas de la Ataxia Telangiectasia Mutada , Secuencia de Bases , Proteínas de Ciclo Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN Helicasas/genética , Replicación del ADN , ADN de Hongos/metabolismo , ADN de Hongos/efectos de la radiación , Proteínas de Unión al ADN , Electroforesis en Gel de Poliacrilamida , Genes Fúngicos , Humanos , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de la radiación , Proteínas de Schizosaccharomyces pombe , Proteínas Supresoras de Tumor , Rayos Ultravioleta
9.
Ciba Found Symp ; 176: 218-28; discussion 229-32, 1993.
Artículo en Inglés | MEDLINE | ID: mdl-8299422

RESUMEN

Sec4 is a Ras-like GTP-binding protein required for exocytosis in yeast. Unlike Ras, it is the ability of Sec4 to cycle between the GTP- and GDP-bound forms rather than the absolute levels of the GTP-bound form that is critical for function. This cycle may be coupled to an observed cycle of Sec4 localization within the cell. Sec4 binds to secretory vesicles which then fuse with the plasma membrane in exocytosis. Sec4 can recycle from the plasma membrane through a soluble pool to rebind to a new round of vesicles. We have found an activity in yeast (Saccharomyces cerevisiae) comparable to that of the GDP dissociation inhibitor protein isolated from mammalian cells that releases GDP-bound Sec4 from membranes. DSS4-1, a dominant suppressor of the sec4-8 temperature-sensitive mutation, encodes a nucleotide exchange protein. The cycle of Sec4 may function to allow the assembly and subsequent disassembly of a set of proteins necessary for exocytosis. Candidates for members of this set of proteins are encoded by sec genes which show strong genetic interactions with sec4-8. Two of these (SEC8 and SEC15) encode large proteins which form a complex that is peripherally associated with the plasma membrane.


Asunto(s)
Proteínas Fúngicas/fisiología , Proteínas de Unión al GTP/fisiología , Orgánulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab , Transporte Biológico/fisiología , Exocitosis/fisiología , Proteínas de Saccharomyces cerevisiae
10.
Mol Cell Biol ; 12(5): 2017-28, 1992 May.
Artículo en Inglés | MEDLINE | ID: mdl-1569938

RESUMEN

Sec4, a GTP-binding protein of the ras superfamily, is required for exocytosis in the budding yeast Saccharomyces cerevisiae. To test the role of GTP hydrolysis in Sec4 function, we constructed a mutation, Q-79----L, analogous to the oncogenic mutation of Q-61----L in Ras, in a region of Sec4 predicted to interact with the phosphoryl group of GTP. The sec4-leu79 mutation lowers the intrinsic hydrolysis rate to unmeasurable levels. A component of a yeast lysate specifically stimulates the hydrolysis of GTP by Sec4, while the rate of hydrolysis of GTP by Sec4-Leu79 can be stimulated by this GAP activity to only 30% of the stimulated hydrolysis rate of the wild-type protein. The decreased rate of hydrolysis results in the accumulation of the Sec4-Leu79 protein in its GTP-bound form in an overproducing yeast strain. The sec4-leu79 allele can function as the sole copy of sec4 in yeast cells. However, it causes recessive, cold-sensitive growth, a slowing of invertase secretion, and accumulation of secretory vesicles and displays synthetic lethality with a subset of other secretory mutants, indicative of a partial loss of Sec4 function. While the level of Ras function reflects the absolute level of GTP-bound protein, our results suggest that the ability of Sec4 to cycle between its GTP and GDP bound forms is important for its function in vesicular transport, supporting a mechanism for Sec4 function which is distinct from that of the Ras protein.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab , Secuencia de Aminoácidos , Unión Competitiva , Fraccionamiento Celular , Centrifugación por Gradiente de Densidad , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas Activadoras de GTPasa , Genotipo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Hidrólisis , Cinética , Mutagénesis Sitio-Dirigida , Fosfatos/metabolismo , Proteínas Recombinantes/metabolismo , Mapeo Restrictivo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae , Proteínas Activadoras de ras GTPasa
11.
EMBO J ; 8(6): 1685-93, 1989 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2504585

RESUMEN

Mutant alleles of SEC4, an essential gene required for the final stage of secretion in yeast, have been generated by in vitro mutagenesis. Deletion of the two cysteine residues at the C terminus of the protein results in a soluble non-functional protein, indicating that those two residues are required for normal localization of Sec4p to secretory vesicles and the plasma membrane. A mutant allele of SEC4 generated to mimic an activated, transforming allele of H-ras, as predicted, does not bind GTP. The presence of this allele in cells containing wild-type SEC4 causes a secretory defect and the accumulation of secretory vesicles. The results of genetic studies indicate that this allele behaves as a dominant loss of function mutant and as such prevents wild-type protein from functioning properly. We propose a model in which Sec4p cycles between an active and an inactive state in order to mediate the fusion of vesicles to the plasma membrane.


Asunto(s)
Genes Fúngicos , Saccharomyces cerevisiae/genética , Alelos , Secuencia de Aminoácidos , Deleción Cromosómica , Gránulos Citoplasmáticos/fisiología , Gránulos Citoplasmáticos/ultraestructura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Genes Dominantes , Genes Letales , Fusión de Membrana , Datos de Secuencia Molecular , Mutación , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/ultraestructura
12.
Methods Cell Biol ; 31: 335-56, 1989.
Artículo en Inglés | MEDLINE | ID: mdl-2674627

RESUMEN

In summary, organelles of the secretory pathway can be effectively separated from one another using differential centrifugation followed by sucrose density gradient fractionation of wild-type or vesicle-accumulating mutant yeast cells. Up to 10-fold enrichment of the plasma membrane fraction is obtained, and resolution of the peak fractions of several organelles allows one to localize specific proteins to particular components of the pathway. Additionally, a highly purified population of constitutive secretory vesicles can be isolated from the 100,000 g membrane fraction of sec 6-4 cells on a Sephacryl S-1000 column. The success of this procedure is due to the homogeneous size of the vesicles and the high concentration of vesicles accumulated in the sec 6-4 cells. From other laboratories, methods have been described for the isolation of other organelles including the vacuole (Wiemken, 1975), plasma membrane (Tschopp and Schekman, 1983), and nuclei (Mann and Mecke, 1980), as well as an alternative procedure for the purification of secretory vesicles from yeast (Holcomb et al., 1987). For the localization of proteins to particular organelles the ability to lyse cells osmotically is an important improvement over the glass bead lysis procedure. The shear forces generated during glass bead lysis could potentially remove proteins from the surface of organelles that otherwise would be membrane-attached, causing them to appear soluble. Similarly, because the conditions required for stabilizing the association of a protein with a membrane can be quite variable depending on the lysis buffer, confirmation of localization using alternative schemes is prudent. With the advent of such techniques as confocal immunofluorescent microscopy and immunoelectron microscopy, effective methods for confirming localizations are becoming available.


Asunto(s)
Orgánulos/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Fraccionamiento Celular/métodos , Centrifugación por Gradiente de Densidad/métodos , Cromatografía en Gel/métodos , Proteínas Fúngicas/aislamiento & purificación , Indicadores y Reactivos , Microscopía Electrónica , Peso Molecular , Saccharomyces cerevisiae/crecimiento & desarrollo , Esferoplastos/ultraestructura , Ultracentrifugación/métodos
13.
Cell ; 53(5): 753-68, 1988 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-3131018

RESUMEN

SEC4, one of the 10 genes involved in the final stage of the yeast secretory pathway, encodes a ras-like, GTP-binding protein. In wild-type cells, Sec4 protein is located on the cytoplasmic face of both the plasma membrane and the secretory vesicles in transit to the cell surface. In all post-Golgi blocked sec mutants, Sec4p is predominantly associated with the secretory vesicles that accumulate as a result of the secretory block. Sec4p is synthesized as a soluble protein that rapidly (t1/2 less than or equal to 1 min) and tightly associates with secretory vesicles and the plasma membrane by virtue of a conformational change of a covalent modification. These data suggest that Sec4p may function as a "G" protein on the vesicle surface to transduce an intracellular signal needed to regulate transport between the Golgi apparatus and the plasma membrane.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al GTP/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Proteínas de Unión al GTP/genética , Genes , Genes Fúngicos , Genotipo , Cinética , Mutación , Plásmidos , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética
15.
J Cell Biol ; 105(1): 163-74, 1987 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-3301865

RESUMEN

We have developed a purification procedure for the isolation of constitutive post-Golgi secretory vesicles from Saccharomyces cerevisiae. Although the post-Golgi stage of the secretion pathway is normally very rapid, we have used a temperature-sensitive secretory mutant, sec 6-4, to greatly expand the population of secretory vesicles. Following invertase as a marker, intact vesicles are enriched 36-fold from the crude lysate. The final preparation contains few contaminants as assessed by morphologic and biochemical examination. Three proteins (110, 40-45, and 18 kD) co-purify with the vesicle marker enzyme invertase. Metabolic labeling experiments indicate that these vesicle-associated proteins are synthesized during the period of vesicle accumulation. They are not apparent in the corresponding fractions from wild-type cells. Analysis of these proteins indicates that the 110-kD protein is a major glycoprotein residing in the vesicle lumen, while the 40-45- and 18-kD proteins are not glycosylated and are firmly associated with the vesicle membrane, each with at least one domain exposed on the cytoplasmic surface.


Asunto(s)
Fraccionamiento Celular/métodos , Membranas Intracelulares/análisis , Saccharomyces cerevisiae/ultraestructura , Proteínas Fúngicas/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología
16.
J Invest Dermatol ; 86(6): 709-14, 1986 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2423618

RESUMEN

The effect of 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2-D3] on the proliferation and morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown under defined, serum-free conditions was studied. 1 alpha,25-(OH)2-D3 caused a dose-dependent decrease in proliferation and an increase in the morphologic differentiation of human cultured keratinocytes. The number of attached basal cells decreased when exposed to 1 alpha,25-(OH)2-D3, whereas the number of attached squamous cells, terminally differentiated desquamated cells, and cornified cells increased concurrently. In addition, after incubation with 1 alpha,25-(OH)2-D3, there was a shift to cells of lighter density. In conjunction with its effect on the basal cells, 1 alpha,25-(OH)2-D3 resulted in an inhibition of DNA synthesis. The activity of transglutaminase, the enzyme responsible for cross-linking the proteins of the cornified envelope, was stimulated by 156% with 1 alpha,25-(OH)2-D3, but not with 1 beta,25-(OH)2-D3, a biologically inert isomer. Therefore it appears that 1 alpha,25-(OH)2-D3 is a potent inhibitor of keratinocyte proliferation as well as a stimulator of epidermal terminal differentiation.


Asunto(s)
Calcitriol/farmacología , Células Epidérmicas , Queratinas/análisis , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , ADN/metabolismo , Activación Enzimática , Humanos , Timidina/metabolismo , Transglutaminasas/metabolismo , Tritio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA