Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Mar Pollut Bull ; 205: 116589, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875970

RESUMEN

Airborne bacteria along with chemical composition of aerosols were investigated during five sampling seasons at an offshore island of the East China Sea. Bacterial diversity was the lowest in spring, the highest in winter, and similar between the autumns of 2019 and 2020, suggesting remarkably seasonal variation but little interannual change. Geodermatophilus (Actinobacteria) was the indicator genus of mineral dust (MD) showed higher proportion in spring than in other seasons. Mastigocladopsis_PCC-10914 (Cyanobacteria) as the indicator of sea salt (SS) demonstrated the highest percentages in both autumns, when the air masses mainly passed over the ocean prior to the sampling site. The higher proportions of soil-derived genera Rubellimicrobium and Craurococcus (both Proteobacteria) and extremophile Chroococcidiopsis_SAG_2023 (Cyanobacteria) were found in summer and winter, respectively. Our study explores the linkage between aerosol source and transport path and bacterial composition, which has implication to understanding of land-sea transmission of bacterial taxa.


Asunto(s)
Aerosoles , Microbiología del Aire , Bacterias , Monitoreo del Ambiente , Estaciones del Año , Aerosoles/análisis , China , Biodiversidad , Océanos y Mares , Agua de Mar/química , Agua de Mar/microbiología
2.
J Neuroeng Rehabil ; 21(1): 98, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851703

RESUMEN

PURPOSE: This pilot study aimed to investigate the effects of REX exoskeleton rehabilitation robot training on the balance and lower limb function in patients with sub-acute stroke. METHODS: This was a pilot, single-blind, randomized controlled trial. Twenty-four patients with sub-acute stroke (with the course of disease ranging from 3 weeks to 3 months) were randomized into two groups, including a robot group and a control group. Patients in control group received upright bed rehabilitation (n = 12) and those in robot group received exoskeleton rehabilitation robot training (n = 12). The frequency of training in both groups was once a day (60 min each) for 5 days a week for a total of 4 weeks. Besides, the two groups were evaluated before, 2 weeks after and 4 weeks after the intervention, respectively. The primary assessment index was the Berg Balance Scale (BBS), whereas the secondary assessment indexes included the Fugl-Meyer Lower Extremity Motor Function Scale (FMA-LE), the Posture Assessment Scale for Stroke Patients (PASS), the Activities of Daily Living Scale (Modified Barthel Index, MBI), the Tecnobody Balance Tester, and lower extremity muscle surface electromyography (sEMG). RESULTS: The robot group showed significant improvements (P < 0.05) in the primary efficacy index BBS, as well as the secondary efficacy indexes PASS, FMA-LE, MBI, Tecnobody Balance Tester, and sEMG of the lower limb muscles. Besides, there were a significant differences in BBS, PASS, static eye-opening area or dynamic stability limit evaluation indexes between the robotic and control groups (P < 0.05). CONCLUSIONS: This is the first study to investigate the effectiveness of the REX exoskeleton rehabilitation robot in the rehabilitation of patients with stroke. According to our results, the REX exoskeleton rehabilitation robot demonstrated superior potential efficacy in promoting the early recovery of balance and motor functions in patients with sub-acute stroke. Future large-scale randomized controlled studies and follow-up assessments are needed to validate the current findings. CLINICAL TRIALS REGISTRATION: URL: https://www.chictr.org.cn/index.html.Unique identifier: ChiCTR2300068398.


Asunto(s)
Dispositivo Exoesqueleto , Extremidad Inferior , Equilibrio Postural , Robótica , Rehabilitación de Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Masculino , Proyectos Piloto , Femenino , Persona de Mediana Edad , Extremidad Inferior/fisiopatología , Equilibrio Postural/fisiología , Método Simple Ciego , Robótica/instrumentación , Anciano , Adulto , Accidente Cerebrovascular/fisiopatología , Electromiografía , Resultado del Tratamiento , Recuperación de la Función
3.
Environ Res ; 252(Pt 1): 118860, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582422

RESUMEN

The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1-140 µM. The achieved sensitivities of 24.62 µA µM-1 cm-2 and 22.10 µA µM-1 cm-2 surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 µM and 0.16 µM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%-104.5% and 96.5%-101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.


Asunto(s)
Antimonio , Catecoles , Técnicas Electroquímicas , Hidroquinonas , Pirólisis , Hidroquinonas/química , Hidroquinonas/análisis , Catecoles/análisis , Catecoles/química , Antimonio/química , Antimonio/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Sulfuros/química
4.
Heliyon ; 10(6): e28281, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545138

RESUMEN

Due to the low toxicity, biocompatibility and eco-friendliness, microorganisms have received a lot of attention for gold nanoparticles (AuNPs) synthesis. This work isolated a fungal strain capable of efficiently generating AuNPs from aerobic granular sludge, named XY3. Comparison of 18S rDNA sequence results showed that fungus XY3 belongs to Candida rugopelliculosa. AuNPs were synthesized by initiating an Au3+-induced stress response that prompted the reduction of Au3+ to Au0 by the fungus XY3. It is worth noting that the addition of nutritional substrates weakens the stress response induced by Au3+, resulting in a decrease in the yield of AuNPs. As evidenced by nystatin inhibition studies, the synthesis of AuNPs is based on biochemical reactions rather than purely physical changes. The XRD results suggested that XY3-secreted biomolecules were involved in the reduction of Au3+ and AuNPs synthesis. The results of the three variation patterns of reducing power, biomolecules, and AuNPs absorbance revealed that Au3+ reduction was mostly dependent on the reducing polysaccharides. In addition, extracellular proteins were shown to be involved in the synthesis of AuNPs, which is responsible for the uniform distribution of AuNPs. This work provided a wide and cost-effective seed source for AuNPs synthesis, and also offered a resourceful solution for residual sludge treatment of fungal type aerobic granular sludge.

5.
Sci Total Environ ; 926: 171798, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521252

RESUMEN

In this study, a biological treatment process, which used a built-in ozonation bypass to achieve sludge reduction, was built to treat the industrial antifreeze production wastewater (mainly composed of ethylene glycol). The results indicated there is a positive correlation between ozone dosage and sludge reduction. At the laboratory level, the MLSS in the system can be stably controlled at around 3400 mg MLSS L-1 under the dosage of 0.18 g O3 g-1 MLSS. Ozonation can increase the compactness of sludge flocs (fractal dimension increased from 1.89 to 1.92). Ozone destroys microbial cell membranes and alters the structure of sludge flocs through direct oxidation through electrophilic reactions. It leads to the release of intracellular polysaccharides, proteins, and other biological macromolecules in microorganisms, thereby promoting the implicit growth of microbial populations. Some bacteria such as g_Pseudomonas, g_Gemmobacter, etc. have strong ethylene glycol degradation ability and tolerance to ozonation. The removal of ethylene glycol includes the glyoxylate cycle, glycine serine carbon cycle, and the glutamate-cysteine ligase pathway of assimilation. Gene KatG and gpx may be key factors in improving microbial tolerance to ozonation. The comprehensive evaluation from the perspectives of cost and carbon emission shows that choosing ozone cracking-implicit growth in wastewater treatment systems has significant cost advantages and application value.


Asunto(s)
Ozono , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado/microbiología , Ozono/química , Glicoles de Etileno , Eliminación de Residuos Líquidos/métodos
6.
J Spinal Cord Med ; 47(1): 6-14, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36972206

RESUMEN

CONTEXT: Robot-assisted gait training (RAGT) has been increasingly adopted in many rehabilitation facilities for walking function and activity in individuals with spinal cord injury (SCI). However, the effectiveness of RAGT on lower extremity strength and cardiopulmonary function, especially static pulmonary function, have not been clearly outlined. OBJECTIVE: Determine the effect of RAGT on cardiopulmonary function and lower extremity strength in SCI survivors. METHODS: Eight databases were systematically searched for randomized controlled trials comparing RAGT with conventional physical therapy or other non-robotic therapies for survivors with SCI. Study selection required lower extremity strength decline after SCI at baseline. The overall effects of RAGT were calculated using a meta-analytic method. Begg's test was used to assess the risk of publication bias. RESULTS: The pooled analysis demonstrated that RAGT may have a positive effect for individuals with SCI on lower extremity strength enhancing (n = 408; standardized mean difference [SMD] = 0.81; 95% confidence interval [CI] = 0.14-1.48) and cardiopulmonary endurance(n = 104; standardized mean difference [SMD] = 2.24; 95% confidence interval [CI] = 0.28-4.19). However, no significant effect was established on static pulmonary function. No publication bias was observed according to the Begg's test. CONCLUSIONS: RAGT may be a useful technique for improving lower limb strength and cardiovascular endurance in SCI survivors. The usefulness of RAGT in enhancing static pulmonary function was not demonstrated by the study. However, these results should be interpreted with caution, given the low number of selected studies and subjects. Clinical studies with large sample sizes will be necessary in the future.


Asunto(s)
Terapia por Ejercicio , Robótica , Traumatismos de la Médula Espinal , Humanos , Terapia por Ejercicio/métodos , Marcha , Extremidad Inferior , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/rehabilitación , Caminata
7.
Sci Total Environ ; 896: 165274, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37406692

RESUMEN

Microplastic (MP) is a type of emerging contaminant that is verified to be threatening to some organisms. Controlling MP emission from the source is preferred for its refractory characteristic. The petrochemical industry is a possible contributor, responsible for the most plastic production, and wastewater is the most possible sink of MP. This study applied the Agilent 8700 Laser infrared imaging spectrometer (LDIR) to detect MPs in one typical petrochemical wastewater treatment plant (PWWTP). It was determined that the abundances of MPs in the influent and effluent of the target PWWTP were as high as 7706 and 608 particles/L. The primary treatment removed most MPs (87.5 %) with a final removal efficiency of 92.1 %. 23 types of MPs were identified, and Polyethylene (PE), Polypropylene (PP), Silicone resin prevailed in the effluent. All the MPs were smaller than 483.9 µm. All in all, this study preliminarily unveiled the ignorable status of the petrochemical industry in releasing MPs into the water environment for the first time.

8.
Chemosphere ; 337: 139386, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37394187

RESUMEN

Antibiotic-resistant bacteria, especially multi-antibiotic-resistant bacteria (MARBs), greatly threaten environmental safety and human health. However, studies on the phenotypic resistance and complete genotypic characterization of MARB in aquatic environments are lacking. In this study, a multi-resistant superbug (TR3) was screened by the selective pressure of multi-antibiotics from the activated sludge of the aeration tanks of urban wastewater treatment plants (WWTPs) in 5 different regions of China. Based on the 16 S rDNA sequence alignment it was found that the sequence similarity between strain TR3 and Aeromonas was as high as 99.50%. The genome-wide sequence showed that the base content of the chromosome of strain TR3 is 4,521,851 bp. It contains a plasmid with a length of 9182 bp. All antibiotic resistance genes (ARGs) of strain TR3 are located on the chromosome, which means that it has passage stability. There are multiple types of resistance genes in the genome and plasmid of strain TR3, enduing it with resistance to 5 antibiotics (ciprofloxacin, tetracycline, ampicillin, clarithromycin, and kanamycin), accompanied by the strongest resistance to kanamycin (aminoglycosides) and the worst resistance to clarithromycin (quinolones). From the perspective of gene expression, we show the resistance mechanism of strain TR3 to different types of antibiotics. In addition, the potential pathogenicity of strain TR3 is also discussed. Chlorine and ultraviolet (UV) sterilization on strain TR3 showed that UV is ineffective at low intensity, and it is easy to be revived by light. A low concentration of hypochlorous acid is effective for sterilization, but it can cause the release of DNA, becoming a potential source of ARGs discharged from WWTPs to environmental water bodies.


Asunto(s)
Antibacterianos , Aguas Residuales , Humanos , Antibacterianos/farmacología , Claritromicina , Eliminación de Residuos Líquidos , Bacterias/genética , Genes Bacterianos , Genómica , Kanamicina
9.
Environ Res ; 231(Pt 1): 116183, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201703

RESUMEN

The microbial-mediated removal of arsenate by biomineralization received much attention, but the molecular mechanism of Arsenic (As) removal by mixed microbial populations remains to be elucidated. In this study, a process for the arsenate treatment using sulfate-reducing bacteria (SRB) containing sludge was constructed, and the performance of As removal was investigated at different molar ratios of AsO43- to SO42-. It was found that biomineralization mediated by SRB could achieve the simultaneous removal of arsenate and sulfate from wastewater but only occurred when microbial metabolic processes were involved. The reducing ability of the microorganisms for the sulfate and arsenate was equivalent, so the precipitates produced at the molar ratio of AsO43- to SO42-of 2:3 were most significant. X-ray absorption fine structure (XAFS) spectroscopy was the first time used to determine the molecular structure of the precipitates which were confirmed to be orpiment (As2S3). Combined with the metagenomics analysis, the microbial metabolism mechanism of simultaneous removal of sulfate and arsenate by the mixed microbial population containing SRB was revealed, that is, the sulfate and As(V) were reduced by microbial enzymes to produce S2- and As(III) to further form As2S3 precipitates. This research provided a reference and theoretical foundation for the simultaneous removal of sulfate and arsenic mediated by SRB-containing sludge in wastewater treatment.


Asunto(s)
Arseniatos , Arsénico , Arsénico/metabolismo , Agua/química , Aguas del Alcantarillado/microbiología , Biomineralización , Sulfatos/química
10.
Bioresour Technol ; 383: 129247, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247789

RESUMEN

The specific effects of potassium ferrate (PF) on acid and methane production in anaerobic digestion need further exploration. This study comprehensively investigated the role of PF in organic matter conversion in waste activated sludge (WAS) digestion. Due to the high pH produced by PF self-decomposition, the hydrolysis of organic matter was promoted, whereas the methanogenesis was inhibited. PF could further directly oxidize protein and polysaccharides released by hydrolysis to produce volatile fatty acids (VFAs) and involve in the transformation of ammonia nitrogen. PF could induce the enrichment of functional genes related to fermentation pathways and lessen those related to methanogenesis, and the phylum resistant to PF oxidation and the strains capable of producing VFAs were enriched, resulting in VFAs accumulation. This study analyzed the participation way of PF in anaerobic digestion and provided a theoretical basis for the application of PF in promoting VFAs recovery from sludge digestion.


Asunto(s)
Ácidos Grasos Volátiles , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Anaerobiosis , Genotipo , Fenotipo , Metano , Concentración de Iones de Hidrógeno , Reactores Biológicos
11.
J Hazard Mater ; 451: 131199, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933504

RESUMEN

Microplastics (MPs) are ubiquitous in the environment and have been verified to be harmful to organisms. The petrochemical industry is a possible contributor, for it is the primary plastic producer but is not focused on. In this background, MPs in the influent, effluent, activated sludge, and expatriate sludge of a typical petrochemical wastewater treatment plant (PWWTP) were identified by the laser infrared imaging spectrometer (LDIR). It revealed that the abundances of MPs in the influent and effluent were as high as 10310 and 1280 items/L with a removal efficiency of 87.6%. The removed MPs accumulated in the sludge, and the MP abundances in activated and expatriate sludge reached 4328 and 10767 items/g, respectively. It is estimated that 1440,000 billion MPs might be released into the environment by the petrochemical industry in 2021 globally. For the specific PWWTP, 25 types of MPs were identified, among which Polypropylene (PP), Polyethylene (PE), and Silicone resin were dominant. All of the detected MPs were smaller than 350 µm, and those smaller than 100 µm prevailed. As for the shape, the fragment was dominant. The study confirmed the critical status of the petrochemical industry in releasing MPs for the first time.

12.
Sci Total Environ ; 867: 161164, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36632901

RESUMEN

Aerobic granular sludge (AGS) is a layered microbial aggregate formed by the ordered self-assembly of different microbial populations. In this study, the outer layer (OL), middle layer (ML), and the inner layer (IL) of matured AGS were obtained by circular cutting. The adhesion of microorganisms in IL was significantly higher than that in OL and ML during the famine period, while the adhesion of microorganisms in ML and OL was significantly higher than that in IL during the feast period, confirming that the formation of AGS started in the famine period, and the feast period promoted the increase of particle size. Microorganisms in the three-layer structure were highly diverse and rich in genes for cytochrome c oxidase synthesis with oxygen as the electron acceptor. G_Pseudoxanthomonas was the dominant bacterium in OL. Its spatial distribution increased gradually from the inside to the outside. G_Rhodanobacter was the dominant bacterium in IL. Its spatial distribution gradually decreased from the inside to the outside. The microorganisms in IL contained abundant pili genes. During the self-assembly process of particle formation, G_ Rhodanobaker adhered stronger than G_ Pseudoxanthomonas. The interface between aerobic and anoxic was about 0.6 mm away from the granule surface. Combined with the electron mediator properties of the extracellular polymeric substance (EPS) in granules, it was speculated that the degradation of organic substrates located in the anoxic layer relied on EPS as a mediator for long-range electron transfer, and finally transferred electrons to O2. This study provides a new viewpoint on the formation mechanism of AGS from the perspective of the ordered self-assembly of microorganisms, offering a theoretical basis for the optimal selection of culture conditions and the application of AGS technology.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Aerobiosis , Reactores Biológicos/microbiología , Bacterias/genética , Bacterias/metabolismo , Genotipo , Fenotipo , Eliminación de Residuos Líquidos
13.
J Environ Manage ; 326(Pt B): 116786, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410150

RESUMEN

PHAs are a form of cellular storage polymers with diverse structural and material properties, and their biodegradable and renewable nature makes them a potential green alternative to fossil fuel-based plastics. PHAs are obtained through extraction via various mechanical, physical and chemical processes after their intracellular synthesis. Most studies have until now focused on pure cultures, while information on mixed microbial cultures (MMC) remains limited. In this study, ultrasonic (US) disruption and alkaline digestion by NaOH were applied individually and in combination to obtain PHAs products from an acclimated MMC using phenol as the carbon source. Various parameters were tested, including ultrasonic sound energy density, NaOH concentration, treatment time and temperature, and biomass density. US alone caused limited cell lysis and resulted in high energy consumption and low efficiency. NaOH of 0.05-0.2 M was more efficient in cell disruption, but led to PHAs degradation under elevated temperature and prolonged treatment. Combining US and NaOH significantly improved the overall process efficiency, which could reduce energy consumption by 2/3rds with only minimal PHAs degradation. The most significant factor was identified to be NaOH dosage and treatment time, with US sound energy density playing a minor role. Under the semi-optimized condition (0.2 M NaOH, 1300 W L-1, 10 min), over 70% recovery and 80% purity were achieved from a 3 g L-1 MMC slurry of approximately 50% PHAs fraction. The material and thermal properties of the products were analyzed, and the polymers obtained from US + NaOH treatments showed comparable or higher molecular weight to previously reported results. The products also exhibited good thermal stability and rheological properties, compared to the commercial standard. In conclusion, the combined US and NaOH method has the potential in real application as an efficient process to obtain high quality PHAs from MMC, and cost-effectiveness can be further optimized.


Asunto(s)
Polihidroxialcanoatos , Polihidroxialcanoatos/química , Ultrasonido , Hidróxido de Sodio , Biomasa , Digestión
14.
Environ Sci Pollut Res Int ; 30(3): 7904-7913, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36048394

RESUMEN

Antibiotic-resistant bacteria/resistance genes (ARB/ARGs) have been paid much attention due to the environmental risks they might bring. They were demonstrated to be widespread in surface water and wastewater. Determining the concentrations of ARGs is the first step to evaluate the degree of pollution. In this study, electrochemical detection technology was studied due to its advantages of low cost, fast response, and satisfactory selectivity. Additionally, the electrochemical sensor technology was used to determine the concentration of a ubiquitous ARG (ampicillin gene blaTEM) in the water environment. A kind of electrochemical sensor was prepared on a glassy carbon electrode (GCE). The results of X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) curves indicated that the single-stranded DNA (ssDNA) probe can be successfully immobilized on the surface of the GCE. In addition, the performance of hybridization between the ssDNA probe and the target DNA at diverse temperatures was compared, of which 35 °C was the optimum. Moreover, the change of charge transfer resistance (ΔRct) for the GCE sensor hybridizing with complementary DNA was much higher than that of DNA with the mismatched base, which indicated that the electrochemical sensor prepared in this study was specific. The sensitivity of the sensor was also proved by the strong correlation between the concentrations of ARGs and ΔRct (with the correlation coefficient (R2) of 0.9905). All in all, this study is meaningful for the comprehend on the detection of ARGs through the electrochemical method.


Asunto(s)
Antibacterianos , Carbono , Carbono/química , Antibacterianos/farmacología , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , ADN/química , Electrodos , Técnicas Electroquímicas/métodos , Agua
15.
J Environ Manage ; 324: 116445, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36352724

RESUMEN

Pyrolysis of waste sludge in sewage treatment can achieve a substantial reduction in solid waste and obtain sludge-based biochars with multiple functions. However, the electrochemical properties of sludge-derived biochar as electrode modification material and the electrocatalytic ability of biochar-modified electrodes are still unclear. In this study, sludge-based biochars were prepared at various pyrolysis temperatures (400 °C, 500 °C, 600 °C, 700 °C, and 800 °C) and then were cast on glassy carbon electrodes to fabricate composite biochar-electrodes (GC400, GC500, GC600, GC700, and GC800). The results of elemental analysis and Raman spectra showed that sludge-based biochar prepared at higher temperatures exhibited higher aromaticity and degree of defect structures. And the results of cyclic voltammetry and electrochemical impedance spectra confirmed that biochar-modified electrodes prepared at higher temperatures (>600 °C) possessed better electrocatalytic activity and electrochemical stability, and their higher oxygen evolution potential than control test could improve the electrocatalytic efficiency. In the electrocatalytic oxidation of methyl orange, the removal rate with GC800 was the highest, reaching 94.49% within 240 min, and the removal rates with other composite electrodes were 90.61% (GC700) > 86.96% (GC600) > 80.32% (GC). The free radical quenching experiment revealed that the electrocatalytic degradation of methyl orange mainly depended on the indirect oxidation of hydroxyl radicals generated by electrocatalysis, accounting for 81.3% of the removal rate. The biochar-modified electrode not only greatly improved the electrocatalytic ability of the electrode for the degradation of azo dyes, but also achieved the recycling application of products after pyrolysis of sludge waste.


Asunto(s)
Carbón Orgánico , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Carbón Orgánico/química , Compuestos Azo , Electrodos
16.
J Environ Manage ; 323: 116302, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150350

RESUMEN

It was an important discovery in wastewater treatment that the microorganisms in the traditional activated sludge can form aerobic granular sludge (AGS) by self-aggregation under appropriate water quality and operation conditions. With a typical three-dimensional spherical structure, AGS has high sludge-water separation efficiency, great treatment capacity, and strong tolerance to toxic and harmful substances, so it has been considered to be one of the most promising wastewater treatment technologies. This paper comprehensively reviewed AGS from multiple perspectives over the past two decades, including the culture conditions, granulation mechanisms, metabolic and structural stability, storage, and its diverse applications. Some important issues, such as the reproducibility of culture conditions and the structural and functional stability during application and storage, were also summarized, and the research prospects were put forward. The aggregation behavior of microorganisms in AGS was explained from the perspectives of physiology and ecology of complex populations. The storage of AGS is considered to have large commercial potential value with the increase of large-scale applications. The purpose of this paper is to provide a reference for the systematic and in-depth study on the sludge aerobic granulation process.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aerobiosis , Reactores Biológicos , Reproducibilidad de los Resultados , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
17.
Bioresour Technol ; 362: 127853, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36037839

RESUMEN

In the context of climate policies that advocate carbon neutrality, carbon emission reduction provides a new restriction in evaluating the waste activated sludge (WAS) treatment technologies and procedures. This review provides an overview of current researches and development efforts in WAS treatment, focusing on the dual attributes of WAS as contaminants and resources. Firstly, the improved technical requirements posed by heavy metals, micro(nano) plastics, or other emerging plastics in WAS are studied. Furthermore, in terms of carbon emission reduction, the applications and limitations of widely deployed WAS treatment technologies are discussed. Based on carbon neutrality requirements, the anaerobic co-digestion and co-pyrolysis technologies are comprehensively discussed from the views of pollutants removing efficiencies, enhancement methods, carbon emissions, and resource recovery. Finally, a workable new route for WAS treatment is proposed for future technological advancement and engineering innovation.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Carbono , Plásticos , Tecnología , Eliminación de Residuos Líquidos/métodos
18.
Environ Res ; 208: 112780, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065930

RESUMEN

Periodic starvation was a common strategy for the rapid start-up of aerobic granular sludge (AGS), and investigating the behavior of microbes that originated from inner or outer layer in response to feast/famine condition could provide more details for the development or stability of AGS. In this work, the microbes of the AGS were isolated by layers, the aggregation of microbes, the adhesion behavior of microbes, and viscoelasticity of the layer formed by microbes, at feast/famine conditions, were investigated for the in-depth understanding of the start-up and stability of AGS. The famine condition reduced the negative charge and deprotonated carboxyl groups of the surface thereby boosting the aggregation and adhesion of microbes. The feast condition was more beneficial for the stability of the layer as it caused a denser layer of microbes. The inner core microbes (IC) presented a higher aggregation rate than the outer layer microbes (OL) at feast/famine conditions. Also, the IC presented the highest aggregation rate, adhesion rate, and adhesion mass at famine conditions, which was most in favor of the start-up stage of the aerobic granulation. Since the denser layer was formed by IC, IC had better advantages over OL at the famine stage in the formation of a more stable layer. This study affirmed the role of microbes in the inner layer of the granule during the start-up phase and provided a theoretical basis for understanding the significance of the famine period for rapid granulation.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aerobiosis , Reactores Biológicos , Viscosidad
19.
Bioresour Technol ; 347: 126422, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34838963

RESUMEN

The addition of biochars to promote the efficiency of anaerobic digestion (AD) has widely received concerns. However, the role of persistent free radicals (PFRs) and the electron transfer ability of biochar in AD has not yet been noticed. In this study, biochars were prepared from excess sludge under 400 °C (B400) or 600 °C (B600) and different ratios of sludge to biochar (5:1, 10:1, 20:1) were applied in the AD of sludge. The results verified that PFRs in biochar participated in the sterilization of microorganisms in sludge, resulting in the release of organic matters. Similar to electron mediators, biochars possessed electron exchangeability and the addition of biochars boosted the biogas production by maximum of 54.5%. The enhancing effect of B400 surpassed that of B600 as high temperature destroyed functional groups and reduced the defect degree of biochar. This study achieved in-situ resource utilization and provided references for the improvement of anaerobic digestion.


Asunto(s)
Biocombustibles , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Carbón Orgánico , Electrones , Radicales Libres , Metano
20.
Anal Chem ; 94(2): 732-739, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34932901

RESUMEN

The establishment of rapid targeted identification and analysis of antibiotic resistance genes (ARGs) is very important. In this study, an electrochemical sensor, which can detect ARGs was obtained by modifying the sulfhydryl single-stranded DNA probe onto the thin-film gold electrode through self-assembly. The sensor can perform a hybridization reaction with a target sequence to obtain an electrochemical impedance spectroscopy signal. The results showed that when the concentration of the probe used to modify thin-film gold electrodes during preparation was 1 µM, the hybridization time was 1 h, and the hybridization temperature was 35 °C, the self-assembled sensor showed good detection performance for the ARGs encoding ß-lactam hydrolase. The measurement ARG concentration linear range is 6.3-900.0 ng/mL, and the R2 is 0.9992. The sensor shows good specific recognition ability for single-base, double-base, and three-base mismatch DNA. In addition, after 30 days of storage at 4 °C, the accurate identification and analysis of ARGs can still be maintained.


Asunto(s)
Técnicas Biosensibles , Antibacterianos/farmacología , Técnicas Biosensibles/métodos , Farmacorresistencia Microbiana/genética , Técnicas Electroquímicas , Electrodos , Oro/química , Hibridación de Ácido Nucleico , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA