Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
Biomed Pharmacother ; 175: 116670, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692065

Neutrophils are heterogeneous and plastic, with the ability to polarize from antitumour to protumour phenotype and modulate tumour microenvironment components. While some advances have been made, the neutrophil-targeting therapy remains underexplored. Activation of formyl peptide receptors (FPRs) by formylated peptides is needed for local control of infection through the recruitment of activated neutrophils while the potential contribution of antitumour activity remains underexplored. Here, we demonstrate that neutrophils can be harnessed to suppress tumour growth through the action of the formyl peptide (FP) on the formyl peptide receptor (FPR). Mechanistically, FP efficiently recruits neutrophils to produce reactive oxygen species production (ROS), resulting in the direct killing of tumours. Antitumour functions disappeared when neutrophils were depleted by anti-Ly6G antibodies. Interestingly, extensive T-cell activation was observed in mouse tumours treated with FP, showing the potential to alter the immune suppressed tumour microenvironment (TME) and further sensitize mice to anti-PD1 therapy. Transcriptomic and flow cytometry analyses revealed the mechanisms of FP-sensitized anti-PD1 therapy, mainly including stimulated neutrophils and an altered immune-suppressed tumour microenvironment. Collectively, these data establish FP as an effective combination partner for sensitizing anti-PD1 therapy by stimulating tumour-infiltrated neutrophils.


Immunotherapy , Mice, Inbred C57BL , Neutrophils , Receptors, Formyl Peptide , T-Lymphocytes , Tumor Microenvironment , Animals , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Mice , Immunotherapy/methods , Receptors, Formyl Peptide/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Humans , Female , Neutrophil Activation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Lymphocyte Activation/drug effects , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology
2.
Nat Protoc ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38816517

Numerous toxins threaten humans, but specific antidotes are unavailable for most of them. Although CRISPR screening has aided the discovery of the mechanisms of some toxins, developing targeted antidotes remains a significant challenge. Recently, we established a systematic framework to develop antidotes by combining the identification of novel drug targets by using a genome-wide CRISPR screen with a virtual screen of drugs approved by the US Food and Drug Administration. This approach allows for a comprehensive understanding of toxin mechanisms at the whole-genome level and facilitates the identification of promising antidote drugs targeting specific molecules. Here, we present step-by-step instructions for executing genome-scale CRISPR-Cas9 knockout screens of toxins in HAP1 cells. We also provide detailed guidance for conducting an in silico drug screen and an in vivo drug validation. By using this protocol, it takes ~4 weeks to perform the genome-scale screen, 4 weeks for sequencing and data analysis, 4 weeks to validate candidate genes, 1 week for the virtual screen and 2 weeks for in vitro drug validation. This framework has the potential to accelerate the development of antidotes for a wide range of toxins and can rapidly identify promising drug candidates that are already known to be safe and effective. This could lead to the development of new antidotes much more quickly than traditional methods, protecting lives from diverse toxins and advancing human health.

3.
Sci China Life Sci ; 67(6): 1212-1225, 2024 Jun.
Article En | MEDLINE | ID: mdl-38811444

Generally shortened 3' UTR due to alternative polyadenylation (APA) is widely observed in cancer, but its regulation mechanisms for cancer are not well characterized. Here, with profiling of APA in colorectal cancer tissues and poly(A) signal editing, we firstly identified that the shortened 3' UTR of CTNNIBP1 in colorectal cancer promotes cell proliferation and migration. We found that liquid-liquid phase separation (LLPS) of PABPN1 is reduced albeit with higher expression in cancer, and the reduction of LLPS leads to the shortened 3' UTR of CTNNBIP1 and promotes cell proliferation and migration. Notably, the splicing factor SNRPD2 upregulated in colorectal cancer, can interact with glutamic-proline (EP) domain of PABPN1, and then disrupt LLPS of PABPN1, which attenuates the repression effect of PABPN1 on the proximal poly(A) sites. Our results firstly reveal a new regulation mechanism of APA by disruption of LLPS of PABPN1, suggesting that regulation of APA by interfering LLPS of 3' end processing factor may have the potential as a new way for the treatment of cancer.


3' Untranslated Regions , Cell Movement , Cell Proliferation , Colorectal Neoplasms , Poly(A)-Binding Protein I , Polyadenylation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Poly(A)-Binding Protein I/metabolism , Poly(A)-Binding Protein I/genetics , Cell Movement/genetics , 3' Untranslated Regions/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Phase Separation
4.
Adv Sci (Weinh) ; 11(19): e2308771, 2024 May.
Article En | MEDLINE | ID: mdl-38477509

Endotoxemia-related acute liver injury has a poor prognosis and high mortality, and macrophage polarization plays a central role in the pathological process. Pregnane X receptor (PXR) serves as a nuclear receptor and xenosensor, safeguarding the liver from toxic stimuli. However, the effect and underlying mechanism of PXR activation on endotoxemic liver injury remain largely unknown. Here, the expression of PXR is reported in human and murine macrophages, and PXR activation modified immunotypes of macrophages. Moreover, PXR activation significantly attenuated endotoxemic liver injury and promoted macrophage M2 polarization. Macrophage depletion by GdCl3 confirmed the essential of macrophages in the beneficial effects observed with PXR activation. The role of PXR in macrophages is further validated using AAV8-F4/80-Pxr shRNA-treated mice; the PXR-mediated hepatoprotection is impaired, and M2 polarization enhancement is blunted. Additionally, treatment with PXR agonists inhibited lipopolysaccharide (LPS)-induced M1 polarization and favored M2 polarization in BMDM, Raw264.7, and THP-1 cells. Further analyses revealed an interaction between PXR and p-STAT6 in vivo and in vitro. Moreover, blocking Pxr or Stat6 abolished the PXR-induced polarization shift. Collectively, macrophage PXR activation attenuated endotoxin-induced liver injury and regulated macrophage polarization through the STAT6 signaling pathway, which provided a potential therapeutic target for managing endotoxemic liver injury.


Endotoxins , Macrophages , Pregnane X Receptor , Animals , Humans , Male , Mice , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/genetics , Disease Models, Animal , Endotoxemia/metabolism , Endotoxemia/genetics , Lipopolysaccharides , Liver/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Pregnane X Receptor/metabolism , Pregnane X Receptor/genetics , Signal Transduction , Female
5.
Acta Pharm Sin B ; 14(1): 223-240, 2024 Jan.
Article En | MEDLINE | ID: mdl-38261805

Lenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.

6.
Gastroenterology ; 166(3): 466-482, 2024 Mar.
Article En | MEDLINE | ID: mdl-38065340

BACKGROUND & AIMS: Although immunotherapy shows substantial advancement in colorectal cancer (CRC) with microsatellite instability high, it has limited efficacy for CRC with microsatellite stability (MSS). Identifying combinations that reverse immune suppression and prime MSS tumors for current immunotherapy approaches remains an urgent need. METHODS: An in vitro CRISPR screen was performed using coculture models of primary tumor cells and autologous immune cells from MSS CRC patients to identify epigenetic targets that could enhance immunotherapy efficacy in MSS tumors. RESULTS: We revealed EHMT2, a histone methyltransferase, as a potential target for MSS CRC. EHMT2 inhibition transformed the immunosuppressive microenvironment of MSS tumors into an immunomodulatory one by altering cytokine expression, leading to T-cell-mediated cytotoxicity activation and improved responsiveness to anti-PD1 treatment. We observed galectin-7 up-regulation upon EHMT2 inhibition, which converted a "cold" MSS tumor environment into a T-cell-inflamed one. Mechanistically, CHD4 repressed galectin-7 expression by recruiting EHMT2 to form a cotranscriptional silencing complex. Galectin-7 administration enhanced anti-PD1 efficacy in MSS CRC, serving as a potent adjunct cytokine therapy. CONCLUSIONS: Our findings suggest that targeting the EHMT2/galectin-7 axis could provide a novel combination strategy for immunotherapy in MSS CRC.


Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Immunotherapy , Cytokines , Galectins/genetics , Microsatellite Repeats , Microsatellite Instability , Tumor Microenvironment , Histocompatibility Antigens , Histone-Lysine N-Methyltransferase
7.
Comput Struct Biotechnol J ; 21: 4540-4551, 2023.
Article En | MEDLINE | ID: mdl-37810279

Tumor mutation burden (TMB) has emerged as an essential biomarker for assessing the efficacy of cancer immunotherapy. However, due to the inherent complexity of tumors, TMB is not always correlated with the responsiveness of immune checkpoint inhibitors (ICIs). Thus, refining the interpretation and contextualization of TMB is a requisite for enhancing clinical outcomes. In this study, we conducted a comprehensive investigation of the relationship between TMB and multi-omics data across 33 human cancer types. Our analysis revealed distinct biological changes associated with varying TMB statuses in STAD, COAD, and UCEC. While multi-omics data offer an opportunity to dissect the intricacies of tumors, extracting meaningful biological insights from such massive information remains a formidable challenge. To address this, we developed and implemented the PGLCN, a biologically informed graph neural network based on pathway interaction information. This model facilitates the stratification of patients into subgroups with distinct TMB statuses and enables the evaluation of driver biological processes through enhanced interpretability. By integrating multi-omics data for TMB prediction, our PGLCN model outperformed previous traditional machine learning methodologies, demonstrating superior TMB status prediction accuracy (STAD AUC: 0.976 ± 0.007; COAD AUC: 0.994 ± 0.007; UCEC AUC: 0.947 ± 0.023) and enhanced interpretability (BA-House: 1.0; BA-Community: 0.999; BA-Grid: 0.994; Tree-Cycles: 0.917; Tree-Grids: 0.867). Furthermore, the biological interpretability inherent to PGLCN identified the Toll-like receptor family and DNA repair pathways as potential combined biomarkers in conjunction with TMB status in gastric cancer. This finding suggests a potential synergistic targeting strategy with immunotherapy for gastric cancer, thus advancing the field of precision oncology.

8.
Acta Pharm Sin B ; 13(8): 3382-3399, 2023 Aug.
Article En | MEDLINE | ID: mdl-37655321

Radiotherapy is widely used in the management of advanced colorectal cancer (CRC). However, the clinical efficacy is limited by the safe irradiated dose. Sensitizing tumor cells to radiotherapy via interrupting DNA repair is a promising approach to conquering the limitation. The BRCA1-BARD1 complex has been demonstrated to play a critical role in homologous recombination (HR) DSB repair, and its functions may be affected by HERC2 or BAP1. Accumulated evidence illustrates that the ubiquitination-deubiquitination balance is involved in these processes; however, the precise mechanism for the cross-talk among these proteins in HR repair following radiation hasn't been defined. Through activity-based profiling, we identified PT33 as an active entity for HR repair suppression. Subsequently, we revealed that BAP1 serves as a novel molecular target of PT33 via a CRISPR-based deubiquitinase screen. Mechanistically, pharmacological covalent inhibition of BAP1 with PT33 recruits HERC2 to compete with BARD1 for BRCA1 interaction, interrupting HR repair. Consequently, PT33 treatment can substantially enhance the sensitivity of CRC cells to radiotherapy in vitro and in vivo. Overall, these findings provide a mechanistic basis for PT33-induced HR suppression and may guide an effective strategy to improve therapeutic gain.

9.
Pharm Biol ; 61(1): 1175-1185, 2023 Dec.
Article En | MEDLINE | ID: mdl-37559448

CONTEXT: Levodopa combined with traditional Chinese medicine has a synergistic effect on Parkinson's disease (PD). Recently, we demonstrated that Nardostachys jatamansi (D. Don) DC. [syn. Patrinia jatamansi D.Don, N. grandiflora DC.] (Valerianaceae) (NJ) can alleviate PD. OBJECTIVE: To explore the synergistic effect of NJ combined with levodopa against PD. MATERIALS AND METHODS: The PD model was established by injecting rotenone. Eighty-four Sprague-Dawley rats were randomly divided into seven groups: sham, model, different doses of NJ (0.31, 0.62, or 1.24 g/kg) combined with levodopa (25 mg/kg), and levodopa alone (25 and 50 mg/kg) groups. The synergistic effect of the combination was investigated by pharmacodynamic investigation and detection of expression of nuclear factor erythro2-related factor 2 (Nrf2) and NLR family proteins containing Pyrin-related domain 3 (NLRP3) pathways. RESULTS: Compared with the model group, NJ + levodopa (1.24 g/kg + 25 mg/kg) increased the moving distance of PD rats in the open field (2395.34 ± 668.73 vs. 1501.41 ± 870.23, p < 0.01), enhanced the stay time on the rotating rod (84.86 ± 18.15 vs. 71.36 ± 17.53, p < 0.01) and the combination was superior to other treatments. The synergistic effects were related to NJ + levodopa (1.24 g/kg + 25 mg/kg) increasing the neurotransmitter levels by 38.80%-88.67% in PD rats, and inhibiting oxidative stress and NLRP3 pathway by activating Nrf2 pathway. DISCUSSION AND CONCLUSIONS: NJ combined with levodopa is a promising therapeutic candidate for PD, which provides a scientific basis for the subsequent clinical combination therapy of levodopa to enhance the anti-PD effect.


Drugs, Chinese Herbal , Nardostachys , Parkinson Disease , Animals , Rats , Levodopa/pharmacology , Nardostachys/chemistry , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Parkinson Disease/drug therapy , Rats, Sprague-Dawley , Signal Transduction , Drugs, Chinese Herbal/pharmacology
10.
Adv Sci (Weinh) ; 10(23): e2300548, 2023 08.
Article En | MEDLINE | ID: mdl-37271874

Pancreatic ductal adenocarcinoma (PDA) is a clinically challenging disease with limited treatment options. Despite a small percentage of cases with defective mismatch DNA repair (dMMR), PDA is included in the most immune-resistant cancer types that are poorly responsive to immune checkpoint blockade (ICB) therapy. To facilitate drug discovery combating this immunosuppressive tumor type, a high-throughput drug screen platform is established with the newly developed T cell-incorporated pancreatic tumor organoid model. Tumor-specific T cells are included in the pancreatic tumor organoids by two-step cell packaging, fully recapitulating immune infiltration in the immunosuppressive tumor microenvironment (TME). The organoids are generated with key components in the original tumor, including epithelial, vascular endothelial, fibroblast and macrophage cells, and then packaged with T cells into their outside layer mimicking a physical barrier and enabling T cell infiltration and cytotoxicity studies. In the PDA organoid-based screen, epigenetic inhibitors ITF2357 and I-BET151 are identified, which in combination with anti-PD-1 based therapy show considerably greater anti-tumor effect. The combinatorial treatment turns the TME from immunosuppressive to immunoactive, up-regulates the MHC-I antigen processing and presentation, and enhances the effector T cell activity. The standardized PDA organoid model has shown great promise to accelerate drug discovery for the immunosuppressive cancer.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , T-Lymphocytes , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Immunotherapy , Organoids/pathology , Tumor Microenvironment , Pancreatic Neoplasms
11.
Phytother Res ; 37(9): 4149-4165, 2023 Sep.
Article En | MEDLINE | ID: mdl-37300355

Anxiety disorder is a chronic and disabling psychiatric disorder that is more prevalent in females than in males. 11-Ethoxyviburtinal is an iridoid extracted from Valeriana jatamansi Jones, which has anxiolytic potential. The aim of the present work was to study the anxiolytic efficacy and mechanism of 11-ethoxyviburtinal in gender-specific mice. We first evaluated the anxiolytic-like efficacy of 11-ethoxyviburtinal in chronic restraint stress (CRS) mice of different sexes through behavioral experiments and biochemical indexes. In addition, network pharmacology and molecular docking were used to predict potential targets and important pathways for the treatment of anxiety disorder with 11-ethoxyviburtinal. Finally, the influence of 11-ethoxyviburtinal on phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, estrogen receptor ß (ERß) expression, and anxiety-like behavior in mice was verified by western blotting, immunohistochemistry staining, antagonist intervention methods, and behavioral experiments. 11-ethoxyviburtinal alleviated the anxiety-like behaviors induced by CRS and inhibited neurotransmitter dysregulation and HPA axis hyperactivity. It inhibited the abnormal activation of the PI3K/Akt signaling pathway, modulated estrogen production, and promoted ERß expression in mice. In addition, the female mice may be more sensitive to the pharmacological effects of 11-ethoxyviburtinal. 11-ethoxyviburtinal may exert its anxiolytic-like effects through PI3K/Akt and E2/ERß signaling pathways. Meanwhile, by comparing the male and female mice, gender differences may affect the therapy and development of anxiety disorder.


Anti-Anxiety Agents , Proto-Oncogene Proteins c-akt , Mice , Male , Animals , Female , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Estrogen Receptor beta/metabolism , Anti-Anxiety Agents/pharmacology , Hypothalamo-Hypophyseal System , Molecular Docking Simulation , Pituitary-Adrenal System/metabolism , Signal Transduction , Anxiety/drug therapy
12.
Mol Nutr Food Res ; 67(15): e2200799, 2023 08.
Article En | MEDLINE | ID: mdl-37194410

SCOPE: As a natural dietary low-molecular-weight thiol, pantethine helps maintain brain homeostasis and function in Alzheimer's disease (AD) mice. The current study aims to investigate the protective effects and underlying mechanisms of pantethine on the mitigation of cognitive deficits and pathology in a triple transgenic AD mouse model. METHODS AND RESULTS: Compared to control mice, oral administration of pantethine improve spatial learning and memory ability, relieve anxiety, and reduce the production of amyloid-ß (Aß), neuronal damage, and inflammation in 3×Tg-AD mice. Pantethine reduces body weight, body fat, and the production of cholesterol in 3×Tg-AD mice by inhibiting sterol regulatory element-binding protein (SREBP2) signal pathway and apolipoprotein E (APOE) expression; lipid rafts in the brain, which are necessary for the processing of the Aß precursor protein (APP), are also decreased. In addition, pantethine regulates the composition, distribution, and abundance of characteristic flora in the intestine; these floras are considered protective and anti-inflammatory in the gastrointestinal tract, suggesting a possible improvement in the gut flora of 3×Tg-AD mice. CONCLUSION: This study highlights the potential therapeutic effect of pantethine in AD by reducing cholesterol and lipid raft formation and regulating intestinal flora, suggesting a new option for the development of clinical drugs for AD.


Alzheimer Disease , Gastrointestinal Microbiome , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Cholesterol/metabolism , Disease Models, Animal
13.
Nat Commun ; 14(1): 2241, 2023 05 16.
Article En | MEDLINE | ID: mdl-37193694

The "death cap", Amanita phalloides, is the world's most poisonous mushroom, responsible for 90% of mushroom-related fatalities. The most fatal component of the death cap is α-amanitin. Despite its lethal effect, the exact mechanisms of how α-amanitin poisons humans remain unclear, leading to no specific antidote available for treatment. Here we show that STT3B is required for α-amanitin toxicity and its inhibitor, indocyanine green (ICG), can be used as a specific antidote. By combining a genome-wide CRISPR screen with an in silico drug screening and in vivo functional validation, we discover that N-glycan biosynthesis pathway and its key component, STT3B, play a crucial role in α-amanitin toxicity and that ICG is a STT3B inhibitor. Furthermore, we demonstrate that ICG is effective in blocking the toxic effect of α-amanitin in cells, liver organoids, and male mice, resulting in an overall increase in animal survival. Together, by combining a genome-wide CRISPR screen for α-amanitin toxicity with an in silico drug screen and functional validation in vivo, our study highlights ICG as a STT3B inhibitor against the mushroom toxin.


Hexosyltransferases , Mycotoxins , Humans , Male , Animals , Mice , Alpha-Amanitin/pharmacology , Indocyanine Green/pharmacology , Antidotes , Amanita , Membrane Proteins
14.
Cancer Res ; 83(13): 2187-2207, 2023 07 05.
Article En | MEDLINE | ID: mdl-37061993

Acquired resistance represents a bottleneck for effective molecular targeted therapy in lung cancer. Metabolic adaptation is a distinct hallmark of human lung cancer that might contribute to acquired resistance. In this study, we discovered a novel mechanism of acquired resistance to EGFR tyrosine kinase inhibitors (TKI) mediated by IGF2BP3-dependent cross-talk between epigenetic modifications and metabolic reprogramming through the IGF2BP3-COX6B2 axis. IGF2BP3 was upregulated in patients with TKI-resistant non-small cell lung cancer, and high IGF2BP3 expression correlated with reduced overall survival. Upregulated expression of the RNA binding protein IGF2BP3 in lung cancer cells reduced sensitivity to TKI treatment and exacerbated the development of drug resistance via promoting oxidative phosphorylation (OXPHOS). COX6B2 mRNA bound IGF2BP3, and COX6B2 was required for increased OXPHOS and acquired EGFR-TKI resistance mediated by IGF2BP3. Mechanistically, IGF2BP3 bound to the 3'-untranslated region of COX6B2 in an m6A-dependent manner to increase COX6B2 mRNA stability. Moreover, the IGF2BP3-COX6B2 axis regulated nicotinamide metabolism, which can alter OXPHOS and promote EGFR-TKI acquired resistance. Inhibition of OXPHOS with IACS-010759, a small-molecule inhibitor, resulted in strong growth suppression in vitro and in vivo in a gefitinib-resistant patient-derived xenograft model. Collectively, these findings suggest that metabolic reprogramming by the IGF2BP3-COX6B2 axis plays a critical role in TKI resistance and confers a targetable metabolic vulnerability to overcome acquired resistance to EGFR-TKIs in lung cancer. SIGNIFICANCE: IGF2BP3 stabilizes COX6B2 to increase oxidative phosphorylation and to drive resistance to EGFR inhibitors in lung cancer, which provides a therapeutic strategy to overcome acquired resistance by targeting metabolic transitions.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction
15.
Molecules ; 28(6)2023 Mar 07.
Article En | MEDLINE | ID: mdl-36985397

Recently, selenium nanoparticles have been drawing attention worldwide, and it is crucial to increase the stability of nano-Se. Morinda officinalis polysaccharides (MOP) are the main active component in Morinda officinalis radix. However, their low activity has limited their application. A novel selenium nanoparticle (Se-MOP) was prepared to solve these problems using MOP as a dispersant. The zeta potential was measured to evaluate the stability, and UV and ATR-FTIR were used to investigate the binding type of selenium and MOP. The morphology was observed by the TEM method. Furthermore, the inhibitory effect on five selected cancer cells (HepG2, MCF-7, AGS, PC9, and HCT8) was evaluated, showing remarkable inhibition of all five cancer cells. The mechanism of inhibition was also investigated by cell circle assay, and it was found that Se-MOP could induce cell circle G0/G1 phase arrest. Immune-enhancing activities were evaluated by measuring the proliferation and cytokines of mouse spleen lymphocytes in vitro and quantitative RT-PCR. The results indicated that single stimulation of Se-MOP and synergistic stimulation with PHA or LPS increased immune capacity and improved immune by increasing the expression of cytokines.


Morinda , Nanoparticles , Selenium , Mice , Animals , Selenium/pharmacology , Selenium/chemistry , Morinda/chemistry , Polysaccharides/pharmacology , Cytokines , Nanoparticles/chemistry
16.
Mol Ther ; 31(2): 517-534, 2023 02 01.
Article En | MEDLINE | ID: mdl-36307991

N6-methyladenosine (m6A) is the most pervasive RNA modification and is recognized as a novel epigenetic regulation in RNA metabolism. Although the m6A modification involves various physiological processes, its roles in drug resistance in colorectal cancer (CRC) still remain unknown. We analyzed the RNA expression profile of m6A/A (%) with MRM mass spectrometry in human 5-fluorouracil (5-FU)-resistant CRC tissues, and used the m6A RNA immunoprecipitation assay to validate the m6A-regulated target. Our results have shown that the m6A demethylase FTO was up-regulated in human primary and 5-FU-resistant CRC. Depletion of FTO decreased cell growth, colony formation and metastasis in 5-FU-resistant CRC cells in vitro and in vivo. Mechanistically, we identified SIVA1, a critical apoptotic gene, as a key downstream target of the FTO-mediated m6A demethylation. The m6A demethylation of SIVA1 at the CDS region induced its mRNA degradation via a YTHDF2-dependent mechanism. The SIVA1 levels were negatively correlated with the FTO levels in clinical CRC tissues. Notably, inhibition of FTO significantly reduced the tolerance of 5-FU in 5-FU-resistant CRC cells via the FTO-SIVA1 axis, whereas SIVA1-depletion could restore the m6A-dependent 5-FU sensitivity in CRC cells. In summary, our findings demonstrate a critical role of FTO as an m6A demethylase enhancing chemo-resistance in CRC cells, and suggest that FTO inhibition may restore the sensitivity of chemo-resistant CRC cells to 5-FU.


Colorectal Neoplasms , Epigenesis, Genetic , Humans , RNA , Fluorouracil/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Apoptosis/genetics , Apoptosis Regulatory Proteins/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
17.
Comput Struct Biotechnol J ; 20: 5076-5084, 2022.
Article En | MEDLINE | ID: mdl-36187925

Many toxins are life-threatening to both animals and humans. However, specific antidotes are not available for most of those toxins. The molecular mechanisms underlying the toxicology of well-known toxins are not yet fully characterized. Recently, the advance in CRISPR-Cas9 technologies has greatly accelerated the process of revealing the toxic mechanisms of some common toxins on hosts from a genome-wide perspective. The high-throughput CRISPR screen has made it feasible to untangle complicated interactions between a particular toxin and its corresponding targeting tissue(s). In this review, we present an overview of recent advances in molecular dissection of toxins' cytotoxicity by using genome-wide CRISPR screens, summarize the components essential for toxin-specific CRISPR screens, and propose new strategies for future research.

18.
Acta Pharm Sin B ; 12(9): 3639-3649, 2022 Sep.
Article En | MEDLINE | ID: mdl-36176901

Hepatotoxicity is a common side effect for patients treated with gefitinib, but the related pathogenesis is unclear and lacks effective predictor and management strategies. A multi-omics approach integrating pharmacometabolomics, pharmacokinetics and pharmacogenomics was employed in non-small cell lung cancer patients to identify the effective predictor for gefitinib-induced hepatotoxicity and explore optional therapy substitution. Here, we found that patients with rs4946935 AA, located in Forkhead Box O3 (FOXO3) which is a well-known autophagic regulator, had a higher risk of hepatotoxicity than those with the GA or GG variant (OR = 18.020, 95%CI = 2.473 to 459.1784, P = 0.018) in a gefitinib-concentration dependent pattern. Furthermore, functional experiments identified that rs4946935_A impaired the expression of FOXO3 by inhibiting the promotor activity, increasing the threshold of autophagy initiation and inhibiting the autophagic activity which contributed to gefitinib-induced liver injury. In contrast, erlotinib-induced liver injury was independent on the variant and expression levels of FOXO3. This study reveals that FOXO3 mutation, leading to autophagic imbalance, plays important role in gefitinib-induced hepatotoxicity, especially for patients with high concentration of gefitinib. In conclusion, FOXO3 mutation is an effective predictor and erlotinib might be an appropriately and well-tolerated treatment option for patients carrying rs4946935 AA.

19.
Phytother Res ; 36(11): 4183-4200, 2022 Nov.
Article En | MEDLINE | ID: mdl-35833337

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Nootkatone (NKT) has been shown to have neuroprotective, anti-inflammatory, and antioxidant effects and in this study, we systematically studied the efficacy and mechanism of action of NKT in rotenone (ROT)-induced PD rats. Firstly, through behavioral experiments and brain tissue staining, we found that NKT alleviated behavioral dysfunction and protected dopaminergic neurons associated with ROT-induced PD rats. Next, target prediction, protein-protein interaction (PPI), Gene Ontology (GO), and pathway enrichment analyses were used to obtain potential targets, specific biological processes, and molecular mechanisms of NKT for the potential treatment of PD. Furthermore, we also applied molecular docking to predict the binding capacity of NKT and related targets. Additionally, in vivo experiments confirmed that NKT could inhibit the expression of Mitogen-activated protein kinase 3 (MAPK3) by activating the PI3K/Akt signaling pathway, reducing neuroinflammation, and ultimately ameliorating ROT-induced PD symptoms. Taken together, the results of the study provide a clear explanation for the remission of PD symptoms by NKT, suggesting that it may be a promising candidate for the treatment of PD.


Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Animals , Rats , Dopaminergic Neurons , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rotenone/metabolism , Signal Transduction
20.
Biomed Pharmacother ; 153: 113269, 2022 Sep.
Article En | MEDLINE | ID: mdl-35728354

In a rotenone-induced Parkinson's disease (PD) rat model, behavioral investigation, pathological examination, inflammatory factor analysis, and mitochondrial structure and function investigation verified the anti-PD efficacy of nardosinone. A combined transcriptome and proteome analysis proposed that the anti-PD target of nardosinone is the slc38a2 gene and may involve the GABAergic synaptic pathway and cAMP-signaling pathway. Analysis of targeted slc38a2 knockout cells and expression of key enzyme-encoding genes in both pathways verified the target and pathways proposed by the 'omics analysis. This further confirms that nardosinone can regulate the slc38a2 gene, a potential new target for the treatment of Parkinson's disease, and plays an anti-PD role through the GABAergic synaptic and cAMP pathways.


Parkinson Disease, Secondary , Parkinson Disease , Animals , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease, Secondary/chemically induced , Polycyclic Sesquiterpenes , Rats , Rotenone/pharmacology
...