Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Fish Shellfish Immunol ; 148: 109504, 2024 May.
Article En | MEDLINE | ID: mdl-38508539

Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.


Anguilla , Fish Diseases , Animals , Aeromonas hydrophila , Virulence , Bacterial Outer Membrane Proteins , Gene Expression Profiling/veterinary
2.
Mar Biotechnol (NY) ; 26(2): 306-323, 2024 Apr.
Article En | MEDLINE | ID: mdl-38367180

Vibrio harveyi, a recently discovered pathogenic bacterium isolated from American eels (Anguilla rostrata), poses uncertainties regarding its pathogenesis in American eel and the molecular mechanisms underlying host defense against V. harveyi infection. This study aimed to determine the LD50 of V. harveyi in American eel and assess the bacterial load in the liver, spleen, and kidney post-infection with the LD50 dose. The results showed that the LD50 of V. harveyi via intraperitoneal injection in American eels over a 14d period was determined to be 1.24 × 103 cfu/g body weight (6.2 × 104 cfu/fish). The peak bacterial load occurred at 36 h post-infection (hpi) in all three organs examined. Histopathology analysis revealed hepatic vein congestion and thrombi, tubular vacuolar degeneration, and splenic bleeding. Moreover, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results indicated significant up or downregulation of 18 host immune- or anti-infection-related genes post 12 to 60 hpi following the infection. Additionally, RNA sequencing (RNA-seq) unveiled 7 hub differentially expressed genes (DEGs) and 11 encoded proteins play crucial roles in the anti-V. harveyi response in American eels. This study firstly represents the comprehensive report on the pathogenicity of V. harveyi to American eels and RNA-seq of host's response to V. harveyi infection. These findings provide valuable insights into V. harveyi pathogenesis and the strategies employed by the host's immune system at the transcriptomic level to combat V. harveyi infection.


Anguilla , Fish Diseases , Gene Expression Profiling , Liver , Vibrio Infections , Vibrio , Animals , Vibrio/pathogenicity , Anguilla/microbiology , Anguilla/genetics , Fish Diseases/microbiology , Fish Diseases/immunology , Vibrio Infections/veterinary , Vibrio Infections/microbiology , Vibrio Infections/immunology , Liver/microbiology , Liver/pathology , Spleen/microbiology , Spleen/pathology , Transcriptome , Kidney/microbiology , Kidney/pathology , Lethal Dose 50 , Bacterial Load
3.
J Fish Dis ; 47(6): e13931, 2024 Jun.
Article En | MEDLINE | ID: mdl-38373044

Vibrio harveyi is commonly found in salt and brackish water and is recognized as a serious bacterial pathogen in aquaculture worldwide. In this study, we cloned the ferric uptake regulator (fur) gene from V. harveyi wild-type strain HA_1, which was isolated from diseased American eels (Anguilla rostrata) and has a length of 450 bp, encoding 149 amino acids. Then, a mutant strain, HA_1-Δfur, was constructed through homologous recombination of a suicide plasmid (pCVD442). The HA_1-Δfur mutant exhibited weaker biofilm formation and swarming motility, and 18-fold decrease (5.5%) in virulence to the American eels; compared to the wild-type strain, the mutant strain showed time and diameter differences in growth and haemolysis, respectively. Additionally, the adhesion ability of the mutant strain was significantly decreased. Moreover, there were 15 different biochemical indicators observed between the two strains. Transcriptome analysis revealed that 875 genes were differentially expressed in the Δfur mutant, with 385 up-regulated and 490 down-regulated DEGs. GO and KEGG enrichment analysis revealed that, compared to the wild-type strain, the type II and type VI secretion systems (T2SS and T6SS), amino acid synthesis and transport and energy metabolism pathways were significantly down-regulated, but the ABC transporters and biosynthesis of siderophore group non-ribosomal peptides pathways were up-regulated in the Δfur strain. The qRT-PCR results further confirmed that DEGs responsible for amino acid transport and energy metabolism were positively regulated, but DEGs involved in iron acquisition were negatively regulated in the Δfur strain. These findings suggest that the virulence of the Δfur strain was significantly decreased, which is closely related to phenotype changing and gene transcript regulation.


Anguilla , Bacterial Proteins , Fish Diseases , Gene Expression Profiling , Vibrio Infections , Vibrio , Animals , Vibrio/pathogenicity , Vibrio/genetics , Vibrio/physiology , Fish Diseases/microbiology , Anguilla/microbiology , Virulence/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Vibrio Infections/veterinary , Vibrio Infections/microbiology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Phenotype , Gene Expression Regulation, Bacterial , Transcriptome
4.
Microb Pathog ; 189: 106591, 2024 Apr.
Article En | MEDLINE | ID: mdl-38401591

The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V. harveyi (Δfur mutant). After the eels were administrated with the Δfur mutant at the dose of 4 × 102 cfu/g body weight, the phagocytic activity of the leucocytes, plasma IgM antibody titers, activity of lysozyme and Superoxide Dismutase (SOD) enzyme, and gene expression levels of 18 immune related proteins were detected to evaluate the protection effect of the LAV. Preliminary findings suggest that the LAV achieved over 60% relative percent survival (RPS) after the American eels were challenged by a wild-type strain of V. harveyi infection on 28 and 42 days post the immunization (dpi). The protection was mainly attributed to increased plasma IgM antibody titers, higher levels of lysozyme, enhanced activity of SOD and some regulated genes encoded immune related proteins. Together, the Δfur mutant strain of V. harveyi, as a novel LAV vaccine, demonstrates promising protective effects against V. harveyi infection in American eels, thus presenting a potential candidate vaccine for fish farming.


Anguilla , Fish Diseases , Vibrio Infections , Vibrio , Animals , Vaccines, Attenuated/genetics , Muramidase , Bacterial Vaccines , Vibrio Infections/prevention & control , Vibrio Infections/veterinary , Vibrio/genetics , Superoxide Dismutase/genetics , Immunoglobulin M , Fish Diseases/prevention & control
5.
Microb Pathog ; 186: 106498, 2024 Jan.
Article En | MEDLINE | ID: mdl-38097116

Vibrio vulnificus is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-V. vulnificus infection remains uncertain. In this study, American eels were infected with different dose of V. vulnificus to determine the LD50. Then, bacterial load in the liver and kidney histopathology were assessed post the LD50 of V. vulnificus infection. Additionally, gene expressions of 18 immune related genes in the liver, spleen and kidney were detected. Furthermore, transcriptome sequencing and enrichment of differentially expressed genes (DEGs) were analyzed in the eel spleens between pre-infection (Con_0), post-36 h (Vv_36), and post-60 h (Vv_60) infection. The results showed that LD50 of V. vulnificus to American eels was determined to be 5.0 × 105 cfu/g body weight, and the bacterial load peaked at 24 and 12 h post the infection (hpi) in the kidney and liver, respectively. The histopathology was highlighted by necrotic hepatocytes and splenic cells, congestion blood vessels in liver and spleen, atrophied glomeruli and vacuolization of renal tubular epithelial cells. The results of RT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated expression post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 16 DEGs play essential role to the immunosuppression in American eels, and the protein-protein interactions shed light on the widespread upregulation GEGs related to metabolism and immune response maintained the host cell homeostasis post the V. vulnificus infection, shedding new light on our understanding of the V. vulnificus pathogenesis towards understudied American eel and the host anti-V. vulnificus infection strategies in gene transcript.


Anguilla , Fish Diseases , Vibrio Infections , Vibrio vulnificus , Animals , Vibrio vulnificus/genetics , Anguilla/genetics , Anguilla/microbiology , Virulence/genetics , RNA-Seq , Fish Diseases/microbiology
6.
Fish Shellfish Immunol ; 141: 109042, 2023 Oct.
Article En | MEDLINE | ID: mdl-37657556

Edwardsiella anguillarum is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-E. anguillarum infection remains uncertain. In this study, LD50 of E. anguillarum to American eels was determined and bacterial load in the liver and kidney of eels was assessed post the LD50 of E. anguillarum infection. The results showed that LD50 of E. anguillarum to American eels was determined to be 2.5 × 105 cfu/g body weight, and the bacterial load peaked at 36 and 72 h post the infection (hpi) in the kidney and liver, respectively. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes, as well as ultrastructural pathology in the kidney were charactered by acute nephritis, showing necrosis of the renal tubular epithelial cells, glomerular capillaries dilate, mitochondria swelling and ribosomes separate from the endoplasmic reticulum. Furthermore, the results of qRT-PCR revealed that 12 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 6 hub DEGs play essential role to the anti-E. anguillarum infection in American eels. Pathogenicity of E. anguillarum to American eels and hub genes related host anti- E. anguillarum infection were firstly reported in this study, shedding new light on our understanding of the E. anguillarum pathogenesis and the host immune response to the E. anguillarum infection strategies in gene transcript.


Anguilla , Animals , Virulence , RNA-Seq , Immunity
7.
Mar Biotechnol (NY) ; 25(3): 372-387, 2023 Jun.
Article En | MEDLINE | ID: mdl-37171708

Edwardsiella anguillarum is a bacterium that commonly infects cultivated eels. Outer membrane protein A (OmpA) emulsified with Freund's adjuvant has been shown to be an effective fishery vaccine against this pathogen. However, the specific roles of OmpA in the vaccine have not been fully explored. In this study, we performed RNA-seq in the liver of a European eel (Anguilla anguilla) after challenge with E. anguillarum in eels previously immunized with an OmpA subunit vaccine. Our aim was to elucidate the differentially alternative splicing (DAS) and differentially expressed long noncoding RNAs (DE-lncRNAs) using a genome-wide transcriptome. The results showed after that at 28 days post-immunization, eels challenged with E. anguillarum (Con_inf) exhibited severe pathological changes in the liver. In contrast, the OmpA infused eels (OmpA_inf group) showed infiltrated lymphocytes, while Freund's adjuvant-inoculated eels (FCIA_inf group) showed edema of hepatocytes and blood coagulation. The relative percent survival (RPS) was 77.7% and 44.4% for OmpA_inf and FCIA_inf compared to the Con_inf group. We identified 37 DE-lncRNAs and 293 DAS genes between OmpA_inf and FCIA_inf. Interactions between DAS gene-expressed proteins indicated that 66 expressed proteins formed 20 networks. Additionally, 33 DE-lncRNAs interacted with 194 target genes formed 246 and 41 networks in co-expression and co-location. Taken together, our findings demonstrate that the OmpA subunit vaccine elicits a higher RPS and provides novel insights into the role of OmpA through DAS genes and DE-lncRNAs perspective. These results are significant for the development of fishery subunit vaccines.


Anguilla , Fish Diseases , RNA, Long Noncoding , Animals , Anguilla/genetics , Freund's Adjuvant , Alternative Splicing , Vaccines, Subunit , Fish Diseases/microbiology
8.
Microb Pathog ; 153: 104801, 2021 Apr.
Article En | MEDLINE | ID: mdl-33610715

Edwardsiella anguillarum is one of the common bacterial pathogens for the cultivated eels in China. The aim of this study was to reveal the cause of E. anguillarum pathogenic to European eel (Anguilla anguilla) from the perspective of the transcriptome. In this study, we first prepared E. anguillarum cultured in vitro and analysed the whole transcriptome after extracting the total RNA. Then, eels were i.p injected with E. anguillarum, and total RNA were extracted from the liver of European eels 48 h after the infection. After sequencing the transcriptome, we obtained average 1.97 × 108 clean reads cultured in vitro and 1.36 × 105 clean reads located in vivo after annotating all reads into the genome of E. anguillarum. The whole transcriptome showed, compared to the E. anguillarum cultured in vitro, 503 significantly up and 657 significantly down-regulated different expressed genes (DEGs) were observed. KEGG analysis showed that 38 DEGs of Two-Component System, 41 DEGs of ABC transporter, and 10 DEGs flagellar assembly pathways were highly upregulated in E. anguillarum located in vivo. Then, we designed primers to analyse the up-regulated DEGs through qRT-PCR and confirmed some up-regulated DEGs. The results of this study provide important reference for the further study of pathogen-host interaction between E. anguillarum and European eel.


Anguilla , Fish Diseases , ATP-Binding Cassette Transporters , Anguilla/genetics , Animals , China , Edwardsiella , Transcriptome
...