Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931607

RESUMEN

Tunnel excavation induces the stress redistribution of the surrounding rock. Structural cracks may develop in the secondary lining due to this stress redistribution and bias pressure, consequently affecting the overall construction safety of the tunnel. This paper aims to achieve real-time monitoring of the excavation stability of the lining structure by integrating two monitoring technologies: structural deformation monitoring and fiber grating strain monitoring. Additionally, it proposes a method to simultaneously measure the thermal strain and applied stress-strain of the structure. By analyzing the displacement and deformation of the lining structure, its stability can be preliminarily evaluated in the short term. To achieve long-term real-time monitoring and a more accurate assessment of the tunnel structure's stability, the paper introduces fiber Bragg grating (FBG) strain sensor monitoring technology. First, based on the geological stratigraphy information obtained from the exploration, a simulation model of the tunnel under different section bias angles is established. The displacement and stress concentration areas of the lining structure are then analyzed to optimize the sensor deployment array and provide a theoretical basis for the sensor arrangement. FBG strain sensors are installed on the surface of the structure to measure thermal strain and loading stress-strain, whereas FBG temperature sensors measure local temperature. The findings indicate that following tunnel excavation, the maximum daily strain differences at K107+043 and K107+240 were 126.87 µÎµ and 209.38 µÎµ, respectively. After a period of rock disturbance, the average daily strain differences due to applied stress-strain were 16.8 µÎµ and 12.65 µÎµ, respectively. The thermal strain was close to the daily strain difference. Therefore, after the rock disturbance subsided, the strain fluctuations in the lining structure were mainly caused by local temperature changes, and the surrounding rock tended to stabilize. This offers a viable method for evaluating structural stability post-tunnel excavation.

2.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38544012

RESUMEN

Tunnel excavation induces the stress redistribution of surrounding rock. In this excavation process, the elastic strain in the rock is quickly released. When the maximum stress on the tunnel lining exceeds the concrete's load-bearing capacity, it causes cracking of the lining. Comprehensive geophysical exploration methods, including seismic computerized tomography, the high-density electrical method, and the ultrasonic single-plane test, indicated the presence of incomplete distribution of broken rock along the tunnel axis. Based on the geophysical exploration results, a carbon-fiber-strengthened tunnel simulation model was established to analyze the mechanical characteristics of the structure and provide a theoretical basis for sensor deployment. Fiber Bragg grating (FBG) strain sensors were used to measure the stress and strain changes in the second lining concrete after carbon reinforcement. Meanwhile, one temperature sensor was installed in each section to enable temperature compensation. The monitoring results demonstrated that the stress-strain of the second lining fluctuated within a small range, and the lining did not show any crack expansion behavior, which indicated that carbon-fiber-reinforced polymer (CFRP) played an effective role in controlling the structural deformation. Therefore, the combined detection of physical exploration and FBG sensors for the structure provided an effective monitoring method for evaluating tunnel stability.

3.
BMC Genomics ; 25(1): 200, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378471

RESUMEN

BACKGROUND: Calmodulins (CaMs)/CaM-like proteins (CMLs) are crucial Ca2+-binding sensors that can decode and transduce Ca2+ signals during plant development and in response to various stimuli. The CaM/CML gene family has been characterized in many plant species, but this family has not yet been characterized and analyzed in peanut, especially for its functions in response to Ralstonia solanacearum. In this study, we performed a genome-wide analysis to analyze the CaM/CML genes and their functions in resistance to R. solanacearum. RESULTS: Here, 67, 72, and 214 CaM/CML genes were identified from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively. The genes were divided into nine subgroups (Groups I-IX) with relatively conserved exon‒intron structures and motif compositions. Gene duplication, which included whole-genome duplication, tandem repeats, scattered repeats, and unconnected repeats, produced approximately 81 pairs of homologous genes in the AhCaM/CML gene family. Allopolyploidization was the main reason for the greater number of AhCaM/CML members. The nonsynonymous (Ka) versus synonymous (Ks) substitution rates (less than 1.0) suggested that all homologous pairs underwent intensive purifying selection pressure during evolution. AhCML69 was constitutively expressed in different tissues of peanut plants and was involved in the response to R. solanacearum infection. The AhCML69 protein was localized in the cytoplasm and nucleus. Transient overexpression of AhCML69 in tobacco leaves increased resistance to R. solanacearum infection and induced the expression of defense-related genes, suggesting that AhCML69 is a positive regulator of disease resistance. CONCLUSIONS: This study provides the first comprehensive analysis of the AhCaM/CML gene family and potential genetic resources for the molecular design and breeding of peanut bacterial wilt resistance.


Asunto(s)
Arachis , Ralstonia solanacearum , Arachis/metabolismo , Ralstonia solanacearum/genética , Fitomejoramiento , Duplicación de Gen , Intrones , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
BMC Plant Biol ; 23(1): 367, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37480003

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) have been brought great attention for their crucial roles in diverse biological processes. However, systematic identification of lncRNAs associated with specialized rice pest, brown planthopper (BPH), defense in rice remains unexplored. RESULTS: In this study, a genome-wide high throughput sequencing analysis was performed using leaf sheaths of susceptible rice Taichung Native 1 (TN1) and resistant rice IR36 and R476 with and without BPH feeding. A total of 2283 lncRNAs were identified, of which 649 lncRNAs were differentially expressed. During BPH infestation, 84 (120 in total), 52 (70 in total) and 63 (94 in total) of differentially expressed lncRNAs were found only in TN1, IR36 and R476, respectively. Through analyzing their cis-, trans-, and target mimic-activities, not only the lncRNAs targeting resistance genes (NBS-LRR and RLKs) and transcription factors, but also the lncRNAs acting as the targets of the well-studied stress-related miRNAs (miR2118, miR528, and miR1320) in each variety were identified. Before the BPH feeding, 238 and 312 lncRNAs were found to be differentially expressed in TN1 vs. IR36 and TN1 vs. R476, respectively. Among their putative targets, the plant-pathogen interaction pathway was significantly enriched. It is speculated that the resistant rice was in a priming state by the regulation of lncRNAs. Furthermore, the lncRNAs extensively involved in response to BPH feeding were identified by Weighted Gene Co-expression Network Analysis (WGCNA), and the possible regulation networks of the key lncRNAs were constructed. These lncRNAs regulate different pathways that contribute to the basal defense and specific resistance of rice to the BPH. CONCLUSION: In summary, we identified the specific lncRNAs targeting the well-studied stress-related miRNAs, resistance genes, and transcription factors in each variety during BPH infestation. Additionally, the possible regulating network of the lncRNAs extensively responding to BPH feeding revealed by WGCNA were constructed. These findings will provide further understanding of the regulatory roles of lncRNAs in BPH defense, and lay a foundation for functional research on the candidate lncRNAs.


Asunto(s)
Hemípteros , MicroARNs , Oryza , ARN Largo no Codificante , MicroARNs/genética , Oryza/genética , Hojas de la Planta/genética , ARN Largo no Codificante/genética , Factores de Transcripción , Transcriptoma , Animales
5.
Biochem Biophys Res Commun ; 671: 270-277, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37311264

RESUMEN

Long noncoding RNA (lncRNA) transcripts are longer than 200 nt and are not translated into proteins. LncRNAs function in a wide variety of processes in plants and animals, but, perhaps because of their lower expression and conservation levels, plant lncRNAs had attracted less attention than protein-coding mRNAs. Now, recent studies have made remarkable progress in identifying lncRNAs and understanding their functions. In this review, we discuss a number of lncRNAs that have important functions in growth, development, reproduction, responses to abiotic stresses, and regulation of disease and insect resistance in plants. Additionally, we describe the known mechanisms of action of plant lncRNAs according to their origins within the genome. This review thus provides a guide for identifying and functionally characterizing new lncRNAs in plants.


Asunto(s)
ARN Largo no Codificante , Animales , ARN Largo no Codificante/metabolismo , Plantas/genética , Plantas/metabolismo , Estrés Fisiológico/genética , Genoma , Regulación de la Expresión Génica de las Plantas , ARN de Planta/genética , ARN de Planta/metabolismo
6.
BMC Plant Biol ; 23(1): 190, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37038118

RESUMEN

BACKGROUND: Waxy corn has a short growth cycle and high multiple cropping index. However, after being planted in early spring, late autumn and winter, it is susceptible to low temperature (LT), which reduces the emergence rate and yield. Therefore, it is important to analyze the response mechanism of waxy corn under LT stress. RESULTS: All phenotype indexes of waxy corn inbred lines N28 were significantly higher than waxy corn inbred lines N67 under LT. With the increase of LT stress time, all physiological indexes showed an upward trend in N28 and N67. Differentially expressed genes (DEGs) 16,017 and 14,435 were identified in N28 and N67 compared with nongerminated control under LT germination, respectively, and differential metabolites 127 and 93 were detected in N28 and N67, respectively. In addition, the expression level of some genes involved in plant hormones and mitogen activated protein kinase (MAPK) signaling pathways was significantly up-regulated in N28. Compared with N67, flavonoid metabolites were also significantly enriched in N28 under LT germination. CONCLUSION: Under LT stress, the inbred lines N28 was significantly higher than the inbred lines N67 in the phenotypic and physiological indices of cold resistance. Compared with N67, the expression levels of some genes involved in the plant hormones and MAPK pathways were significantly up-regulated in N28, and flavonoid metabolites were also significantly enriched in N28 under LT stress. These genes and metabolites may help N28 to improve cold resistance and may be as potential target genes for cold resistance breeding in waxy corn.


Asunto(s)
Germinación , Transcriptoma , Germinación/genética , Zea mays/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Temperatura , Semillas , Fitomejoramiento , Perfilación de la Expresión Génica , Metabolómica , Frío , Regulación de la Expresión Génica de las Plantas
7.
Rev Sci Instrum ; 94(3): 035105, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012824

RESUMEN

The collimator is an essential part of the fiber optic rotary joint design. This study proposes the Large-Beam Fiber Collimator (LBFC) with a double collimating lens and a Thermally Expanded Core (TEC) fiber structure. The transmission model is constructed based on the defocusing telescope structure. The effects of TEC fiber's mode field diameter (MFD) on the coupling loss are investigated by deriving the loss function for the influence of collimator mismatch error and implementing it on a fiber Bragg grating temperature sensing system. The experimental results show that the coupling loss decreases with the increase of the MFD of TEC fiber, while the coupling loss is less than 1 dB when the mode field diameter is greater than 14 µm. TEC fibers can reduce the effect of angular deviation. Considering the coupling efficiency and deviation, the preferred mode field diameter for the collimator is 20 µm. The proposed LBFC enables bidirectional transmission of optical signals for temperature measurement.

8.
Genes (Basel) ; 13(11)2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36421767

RESUMEN

Plant mineral nutrition substantially affects the growth, yield and quality of rice, whereas nitrogen (N) application contributes significantly in this regard. Undoubtedly, N application improves rice aroma biosynthesis; however, the molecular mechanism underlying the regulation of grain 2-acetyl-1-pyrroline (2-AP) biosynthesis in the presence of nitrogen application at the booting stage has remained largely unexplored. The present study examined the effects of three N levels, i.e., 0 g per pot (N0), 0.43 g per pot (N1) and 0.86 g per pot (N2) on intermediates, enzymes and genes involved in 2-AP biosynthesis, as well as on the yield of two fragrant rice cultivars viz, Meixiangzhan2 and Xiangyaxiangzhan. N was additionally applied at the booting stage. The results depicted that the levels of precursor, such as proline, and the activity of enzymes involved in 2-AP biosynthesis, such as Δ1-pyrroline-5-carboxylate synthetase (P5CS) and diamine oxidase (DAO), and P5CS1 gene expression were comparatively higher under N1 than N0 in both fragrant rice cultivars. Moreover, the N2 treatment increased the grain panicle-1, filled grain percentage and grain yield of both rice cultivars, while the grain yield of Meixiangzhan2 and Xiangyaxiangzhan was increased by 15.87% and 12.09%, respectively, under N2 compared to N1 treatment. Hence, 0.43 g per pot of N showed positive performances in yield and aroma accumulation in fragrant rice and should be further employed in the practice and production for better cultivation in the rice market.


Asunto(s)
Oryza , Odorantes , Nitrógeno/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Prolina/metabolismo
9.
Genes (Basel) ; 13(10)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36292715

RESUMEN

In acidic soils, high concentrations of aluminum ions (Al3+) in dissolved form reduce root growth and development of most crops. In addition, Al3+ is also a beneficial element in some plant species in low concentrations. However, the regulatory mechanism of the growth and development of peanut (Arachis hypogaea L.) treated with different concentrations of Al3+ has been rarely studied. In this study, peanut seedlings were treated with AlCl3.18H2O in Hoagland nutrient solution at four different concentrations of Al3+, i.e., 0 (pH 6.85), 1.25 (pH 4.03), 2.5 (pH 3.85), and 5 (pH 3.69) mmol/L, which are regarded as Al0, Al1, Al2, and Al3. The results showed that low concentrations of Al treatment (Al1) promoted peanut growth, while high concentrations of Al treatments (Al2 and Al3) significantly inhibited peanut growth. Compared with the control (Al0), transcriptome analysis showed that the differentially expressed genes (DEGs) of starch and sucrose metabolic pathways were significantly enriched at low concentrations, i.e., Al1 treatment, whereas the expression of AhERD6 (sugar transporter) was significantly up-regulated, and the soluble sugar content was significantly increased. The DEGs of the plant hormone signaling transduction pathway were significantly enriched at high concentrations of Al2 and Al3 treatments, whereas the expression of AhNCED1 (9-cis-epoxycarotenoid dioxygenase) was significantly up-regulated, and the content of ABA was significantly increased. Moreover, the expression of transcription factors (TFs) in peanut was affected by different concentrations of Al. Overall, low concentrations of Al1 promoted peanut growth by increasing soluble sugar content, while high concentrations of Al2 and Al3 inhibited the growth of peanut, induced AhNCED1 gene expression, and increased endogenous ABA content. For peanut, the exposure of Al at low concentrations not only derived an adaptive mechanism to cope with Al stress, but also acted as a stimulator to promote its growth and development.


Asunto(s)
Aluminio , Arachis , Aluminio/toxicidad , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Azúcares/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Suelo
10.
Front Microbiol ; 13: 998817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090119

RESUMEN

Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease that limits peanut production and quality, but the molecular mechanisms of the peanut response to R. solanacearum remain unclear. In this study, we reported the first work analyzing the transcriptomic changes of the resistant and susceptible peanut leaves infected with R. solanacearum HA4-1 and its type III secretion system mutant strains by the cutting leaf method at different timepoints (0, 24, 36, and 72 h post inoculation). A total of 125,978 differentially expressed genes (DEGs) were identified and subsequently classified into six groups to analyze, including resistance-response genes, susceptibility-response genes, PAMPs induced resistance-response genes, PAMPs induced susceptibility-response genes, T3Es induced resistance-response genes, and T3Es induced susceptibility-response genes. KEGG enrichment analyses of these DEGs showed that plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathway were the outstanding pathways. Further analysis revealed that CMLs/CDPKs-WRKY module, MEKK1-MKK2-MPK3 cascade, and auxin signaling played important roles in the peanut response to R. solanacearum. Upon R. solanacearum infection (RSI), three early molecular events were possibly induced in peanuts, including Ca2+ activating CMLs/CDPKs-WRKY module to regulate the expression of resistance/susceptibility-related genes, auxin signaling was induced by AUX/IAA-ARF module to activate auxin-responsive genes that contribute to susceptibility, and MEKK1-MKK2-MPK3-WRKYs was activated by phosphorylation to induce the expression of resistance/susceptibility-related genes. Our research provides new ideas and abundant data resources to elucidate the molecular mechanism of the peanut response to R. solanacearum and to further improve the bacterial wilt resistance of peanuts.

11.
Plant Physiol Biochem ; 185: 132-143, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35688083

RESUMEN

Peanut is an important economic crop worldwide. The content of amino acids, especially essential amino acids, is an important nutritional quality trait of peanut seeds. However, the regulation of amino acid metabolism in peanut seeds is poorly understood. Here, two peanut cultivars, Zhonghuahei 1 and Zhongkaihua 151, with high and low free amino acids in mature seeds, respectively, were selected to investigate the regulatory mechanisms of amino acids during seed development. Zhonghuahei 1 is composed of significantly higher arginine (Arg), asparagine (Asn), and glutamate (Glu) contents than Zhongkaihua 151. However, the metabolomic analyses indicated that the contents of most amino acids were significantly lower in Zhonghuahei 1 at the early developmental stage, while they were reverse at the middle and late stages. Transcriptomic analyses also revealed that the differentially expressed genes between the two cultivars during different stages were enriched in multiple pathways associated with amino acid metabolism. Among them, the Arg biosynthesis pathway showed different regulatory profiles between the two cultivars according to the temporal analysis of gene expression patterns. Subsequent gene co-expression network analysis showed that the gene module darkorange was significantly correlated with Arg content, with an enriched Arg biosynthesis pathway. Accordingly, a gene regulatory network for Arg biosynthesis and metabolism, including key genes (ALDH, ASS1, OTC, and GAD) and transcription factors (GATA, HEX, and ATF), was constructed. These findings provide insights into the regulatory network of amino acid metabolism in peanuts and provide candidate genes that can be applied to facilitate peanut breeding with desirable seeds.


Asunto(s)
Arachis , Transcriptoma , Aminoácidos/metabolismo , Arachis/genética , Arachis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Semillas , Transcriptoma/genética
12.
Front Microbiol ; 13: 830900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273586

RESUMEN

The bacterial wilt of peanut (Arachis hypogaea L.) caused by Ralstonia solanacearum is a devastating soil-borne disease that seriously restricted the world peanut production. However, the molecular mechanism of R. solanacearum-peanut interaction remains largely unknown. We found that R. solanacearum HA4-1 and PeaFJ1 isolated from peanut plants showed different pathogenicity by inoculating more than 110 cultivated peanuts. Phylogenetic tree analysis demonstrated that HA4-1 and PeaFJ1 both belonged to phylotype I and sequevar 14M, which indicates a high degree of genomic homology between them. Genomic sequencing and comparative genomic analysis of PeaFJ1 revealed 153 strain-specific genes compared with HA4-1. The PeaFJ1 strain-specific genes consisted of diverse virulence-related genes including LysR-type transcriptional regulators, two-component system-related genes, and genes contributing to motility and adhesion. In addition, the repertoire of the type III effectors of PeaFJ1 was bioinformatically compared with that of HA4-1 to find the candidate effectors responsible for their different virulences. There are 79 effectors in the PeaFJ1 genome, only 4 of which are different effectors compared with HA4-1, including RipS4, RipBB, RipBS, and RS_T3E_Hyp6. Based on the virulence profiles of the two strains against peanuts, we speculated that RipS4 and RipBB are candidate virulence effectors in PeaFJ1 while RipBS and RS_T3E_Hyp6 are avirulence effectors in HA4-1. In general, our research greatly reduced the scope of virulence-related genes and made it easier to find out the candidates that caused the difference in pathogenicity between the two strains. These results will help to reveal the molecular mechanism of peanut-R. solanacearum interaction and develop targeted control strategies in the future.

13.
Front Genet ; 13: 1057160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704331

RESUMEN

Acyl-CoA-binding proteins (ACBPs), members of a vital housekeeping protein family, are present in various animal and plant species. They are divided into four classes: small ACBPs (class I), ankyrin-repeat ACBPs (class II), large ACBPs (class III), and kelch-ACBPs (class IV). Plant ACBPs play a pivotal role in intracellular transport, protection, and pool formation of acyl-CoA esters, promoting plant development and stress response. Even though legume crops are important for vegetable oils, proteins, vegetables and green manure, legume ACBPs are not well investigated. To comprehensively explore the functions of ACBPs in nine legumes (Lotus japonicus, Medicago truncatula, Glycine max, Vigna angularis, Vigna radiata, Phaseolus vulgaris, Arachis hypogaea, Arachis duranensis, and Arachis ipaensis), we conducted genome-wide identification of the ACBP gene family. Our evolutionary analyses included phylogenetics, gene structure, the conserved motif, chromosomal distribution and homology, subcellular localization, cis-elements, and interacting proteins. The results revealed that ACBP Orthologs of nine legumes had a high identity in gene structure and conserved motif. However, subcellular localization, cis-acting elements, and interaction protein analyses revealed potentially different functions from previously reported. The predicted results were also partially verified in Arachis hypogaea. We believe that our findings will help researchers understand the roles of ACBPs in legumes and encourage them to conduct additional research.

14.
Front Plant Sci ; 12: 781987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899809

RESUMEN

The vase life of cut flowers is largely affected by post-harvest water loss. Cuticular wax is the primary barrier to uncontrolled water loss for aerial plant organs. Studies on leaf cuticular transpiration have been widely conducted; however, little is known about cuticular transpiration in flowers. Here, the cuticular transpiration rate and wax composition of three lily cultivars were determined. The minimum water conductance of tepal cuticles was higher at the green bud than open flower stage. Lily cuticular transpiration exhibited cultivar- and organ-specific differences, where transpiration from the tepals was higher than leaves and was higher in the 'Huang Tianba' than 'Tiber' cultivar. The overall wax coverage of the tepals was higher compared to that of the leaves. Very-long-chain aliphatics were the main wax constituents and were dominated by n-alkanes with carbon (C) chain lengths of C27 and C29, and C29 and C31 in the tepal and leaf waxes, respectively. Primary alcohols and fatty acids as well as small amounts of alkyl esters, ketones, and branched or unsaturated n-alkanes were also detected in both tepal and leaf waxes, depending on the cultivar and organ. In addition, the chain-length distributions were similar between compound classes within cultivars, whereas the predominant C-chain lengths were substantially different between organs. This suggests that the less effective transpiration barrier provided by the tepal waxes may result from the shorter C-chain aliphatics in the tepal cuticle, compared to those in the leaf cuticle. These findings provide further insights to support the exploration of potential techniques for extending the shelf life of cut flowers based on cuticular transpiration barrier properties.

15.
J Agric Food Chem ; 69(38): 11350-11360, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34528806

RESUMEN

The involvement of zinc (Zn) in terms of aroma formation has been rarely investigated. This study shows that the regulation of 2-acetyl-1-pyrroline (2AP) biosynthesis was evaluated in two different rice cultivars under foliar Zn application. The results showed that the 2AP and Zn contents in leaves and grains were improved substantially under foliar Zn application. The 2AP content was positively related to the expression P5CS2 gene, contents of proline, 1-pyrroline, and Δ1-pyrroline-5-carboxylate (P5C), and the activity of pyrroline-5-carboxylate synthase (P5CS) under Zn application in fragrant rice. Multiple transcription factors (TFs) were differently expressed, such as bZIPs, NACs, and MYBs, to play a role under Zn treatments in fragrant rice, suggesting the crucial role of 46 differently expressed TFs in 2AP improvements in fragrant rice. Furthermore, this study showed that the optimal foliar Zn application at a concentration of 30 mg L-1 could increase the 2AP content of aromatic rice and keep the yield stable or increase the yield. TFs were involved in regulating to promote the 2AP formation in aromatic rice under the foliar Zn application. However, the relationship between 2AP biosynthesis pathway genes and TFs in fragrant rice remains to be further studied.


Asunto(s)
Oryza , Odorantes , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pirroles , Transcriptoma , Regulación hacia Arriba , Zinc
16.
Sensors (Basel) ; 21(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34372245

RESUMEN

In this paper, a Fiber Bragg Grating (FBG) stress sensor is developed to measure the stress variation between the lower Excavation Damaged Zone (EDZ) and the upper undistributed rock. The disturbance brought by the environmental temperature can be differentially compensated with two FBGs mounted symmetrically on the spokes. Through finite element analysis, it can be known that the direct stress and shear stress are pointed at the angles of 45° and 60° on both sides of the coal mine roadway, respectively. The anchor ends of the sensors are installed into the upper undistributed rock and the bolt tails of the mine roadway with a depth of 700 m and fastened by nuts to secure the load sensing device on the surface of the rock. When the shallow foundation of surrounding rock is pressed and deformed toward the coal mining road, the structural modifications can be converted into the stress of rock bolt and the strain of spoke. Thus, the FBG mounted on the surface of the spoke receives the shift information of the Bragg wavelength. The monitoring results indicate that the FBG stress sensors are sensitive to the variation of the EDZ. During the blasting, the stress amplitude varies from 40.256 to 175.058 kPa, and the creep time changes from 21 to 74 min. The proposed method can be applied in the field of underground coal mines for safety condition monitoring of the EDZ and forecasting the coal mine roadway stability.

17.
Front Plant Sci ; 12: 807021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35211134

RESUMEN

Ultrasonic (US) treatment is an efficient method to induce crop tolerance against heavy metal toxicity; however, US-induced aluminum (Al) tolerance in peanuts was rarely studied. This study was comprised of two treatments, namely, CK, without ultrasonic treatment, and US, an ultrasonic seed treatment, for 15 min. Both treated and non-treated treatments were applied with Al in the form of AlCl3.18H2O at 5 mmol L-1 in Hoagland solution at one leaf stage. Results depicted that plant height, main root length, and number of lateral roots increased significantly under US treatment. Transcriptome analysis revealed that plant hormone signal transduction and transcription factors (TFs) were significantly enriched in the differentially expressed genes (DEGs) in US treatment, and the plant hormones were measured, including salicylic acid (SA) and abscisic acid (ABA) contents, were substantially increased, while indole acetic acid (IAA) and jasmonic acid (JA) contents were decreased significantly in US treatment. The TFs were verified using quantitative real-time (qRT)-PCR, and it was found that multiple TFs genes were significantly upregulated in US treatment, and ALMT9 and FRDL1 genes were also significantly upregulated in US treatment. Overall, the US treatment induced the regulation of hormone content and regulated gene expression by regulating TFs to improve Al tolerance in peanuts. This study provided a theoretical rationale for US treatment to improve Al tolerance in peanuts.

18.
PLoS One ; 14(6): e0213963, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31242187

RESUMEN

ABA is an important messenger that acts as a signaling mediator for regulating the adaptive response of plants to drought stress. Two production pathways, de novo biosynthesis and hydrolysis of glucose-conjugated ABA by ß-glucosidase (BG), increase cellular ABA levels in plants. ABA catabolism via hydroxylation by 8'-hydroxylase (CYP707A), or conjugation by uridine diphosphate glucosyltransferase (UGT), decreases cellular ABA levels. The transport of ABA through ATP-binding cassette (ABC)-containing transporter proteins, members of ABC transporter G family (ABCG), across plasma membrane (PM) is another important pathway to regulate cellular ABA levels. In this study, based on our previously constructed transcriptome of peanut leaves in response to drought stress, fourteen candidate genes involved in ABA production (including AhZEP, AhNCED1 and AhNCED3, AhABA2, AhAAO1 and AhAAO2, AhABA3, AhBG11 and AhBG24), catabolism (including AhCYP707A3, AhUGT71K1 and AhUGT73B4) and transport (including AhABCG22-1 and AhABCG22-2), were identified homologously and phylogenetically, and further analyzed at the transcriptional level by real-time RT-PCR, simultaneously determining ABA levels in peanut leaves in response to drought. The high sequence identity and very similar subcellular localization of the proteins deduced from 14 identified genes involved in ABA production, catabolism and transport with the reported corresponding enzymes in databases suggest their similar roles in regulating cellular ABA levels. The expression analysis showed that the transcripts of AhZEP, AhNCED1, AhAAO2 and AhABA3 instead of AhABA2, AhNCED3 and AhAAO1 in peanut leaves increased significantly in response to drought stress; and that the AhBG11 and AhBG24 mRNA levels were rapidly and significantly up-regulated, with a 4.83- and 4.58-fold increase, respectively at 2-h of drought stress. The genes involved in ABA catabolism AhCYP707A3, AhUGT71K1 instead of AhUGT73B4 were significantly induced in response to drought stress. The expression of two closely related peanut ABCG genes, AhABCG22.1 and AhABCG22.2, was significantly up-regulated in response to drought stress. The ABA levels rapidly began to accumulate within 2 h (a 56.6-fold increase) from the start of drought stress, and peaked at 10 h of the stress. The highly and rapidly stress up-regulated expressions of genes involved in ABA production and transport, particularly AhNCED1, AhBG11 and AhBG24, and AhABCG22.1 and AhABCG22.2, might contribute to the rapid ABA accumulation in peanut leaves in response to drought. In response to drought stress, ABA accumulation levels in peanut leaves agree well with the up-regulated expressions of ABA-producing genes (AhZEP, AhNCED1, AhAAO2, AhABA3, AhBG11 and AhBG24) and PM-localized ABA importer genes (AhABCG22-1 and AhABCG22-2), in spite of the simultaneously induced ABA catabolic genes (AhCYP707A3 and AhUGT71K1), although the induction of catabolic genes was much lower than that of biosynthetic gene (AhNCED1). This difference in induction kinetics of gene expression may define the significant accumulation of drought-induced ABA levels. These results suggest that ABA homeostasis in peanut leaves in response to drought maintained through a balance between the production, catabolism and transport, rather than simply by the biosynthesis.


Asunto(s)
Ácido Abscísico/metabolismo , Arachis/metabolismo , Sequías , Hojas de la Planta/metabolismo , Estrés Fisiológico , Arachis/fisiología , Transporte Biológico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Homeostasis
19.
PLoS One ; 9(5): e97025, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24825163

RESUMEN

Abscisic acid (ABA) catabolism is one of the determinants of endogenous ABA levels affecting numerous aspects of plant growth and abiotic-stress responses. The major ABA catabolic pathway is triggered by ABA 8'-hydroxylation catalysed by ABA 8'-hydroxylase, the cytochrome P450 CYP707A family. In this study, the full-length cDNAs of AhCYP707A1 and AhCYP707A2 were cloned and characterized from peanut. Expression analyses showed that AhCYP707A1 and AhCYP707A2 were expressed ubiquitously in peanut roots, stems, and leaves with different transcript accumulation levels, including the higher expression of AhCYP707A1 in roots. The expression of AhCYP707A2 was significantly up-regulated by 20% PEG6000 or 250 mmol/L NaCl in peanut roots, stems, and leaves, whereas the up-regulation of AhCYP707A1 transcript level by PEG6000 or NaCl was observed only in roots instead of leaves and stems. Due to the osmotic and ionic stresses of high concentration of NaCl to plants simultaneously, low concentration of LiCl (30 mmol/L, at which concentration osmotic status of cells is not seriously affected, the toxicity of Li+ being higher than that of Na+) was used to examine whether the effect of NaCl might be related to osmotic or ionic stress. The results revealed visually the susceptibility to osmotic stress and the resistance to salt ions in peanut seedlings. The significant up-regulation of AhCYP707A1, AhCYP707A2 and AhNCED1 transcripts and endogenous ABA levels by PEG6000 or NaCl instead of LiCl, showed that the osmotic stress instead of ionic stress affected the expression of those genes and the biosynthesis of ABA in peanut. The functional expression of AhCYP707A1 cDNA in yeast showed that the microsomal fractions prepared from yeast cell expressing recombinant AhCYP707A1 protein exhibited the catalytic activity of ABA 8'-hydroxylase. These results demonstrate that the expressions of AhCYP707A1 and AhCYP707A2 play an important role in ABA catabolism in peanut, particularly in response to osmotic stress.


Asunto(s)
Ácido Abscísico/metabolismo , Arachis/enzimología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Osmorregulación/genética , Arachis/fisiología , Secuencia de Bases , Clonación Molecular , Cartilla de ADN/genética , ADN Complementario/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Cloruro de Litio/farmacología , Datos de Secuencia Molecular , Proteínas de Plantas , Polietilenglicoles/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Cloruro de Sodio/farmacología
20.
Int J Mol Sci ; 14(7): 15179-98, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23880865

RESUMEN

Clathrin, a three-legged triskelion composed of three clathrin heavy chains (CHCs) and three light chains (CLCs), plays a critical role in clathrin-mediated endocytosis (CME) in eukaryotic cells. In this study, the genes ZmCHC1 and ZmCHC2 encoding clathrin heavy chain in maize were cloned and characterized for the first time in monocots. ZmCHC1 encodes a 1693-amino acid-protein including 29 exons and 28 introns, and ZmCHC2 encodes a 1746-amino acid-protein including 28 exons and 27 introns. The high similarities of gene structure, protein sequences and 3D models among ZmCHC1, and Arabidopsis AtCHC1 and AtCHC2 suggest their similar functions in CME. ZmCHC1 gene is predominantly expressed in maize roots instead of ubiquitous expression of ZmCHC2. Consistent with a typical predicted salicylic acid (SA)-responsive element and four predicted ABA-responsive elements (ABREs) in the promoter sequence of ZmCHC1, the expression of ZmCHC1 instead of ZmCHC2 in maize roots is significantly up-regulated by SA or ABA, suggesting that ZmCHC1 gene may be involved in the SA signaling pathway in maize defense responses. The expressions of ZmCHC1 and ZmCHC2 genes in maize are down-regulated by azide or cold treatment, further revealing the energy requirement of CME and suggesting that CME in plants is sensitive to low temperatures.


Asunto(s)
Ácido Abscísico/farmacología , Boro/farmacología , Cadenas Pesadas de Clatrina/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Regulación hacia Arriba/efectos de los fármacos , Zea mays/metabolismo , Secuencia de Aminoácidos , Cadenas Pesadas de Clatrina/clasificación , Cadenas Pesadas de Clatrina/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...