Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1273, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341405

RESUMEN

The meticulous design of active sites and light absorbers holds the key to the development of high-performance photothermal catalysts for CO2 hydrogenation. Here, we report a nonmetallic plasmonic catalyst of Mo2N/MoO2-x nanosheets by integrating a localized surface plasmon resonance effect with two distinct types of active sites for CO2 hydrogenation. Leveraging the synergism of dual active sites, H2 and CO2 molecules can be simultaneously adsorbed and activated on N atom and O vacancy, respectively. Meanwhile, the plasmonic effect of this noble-metal-free catalyst signifies its promising ability to convert photon energy into localized heat. Consequently, Mo2N/MoO2-x nanosheets exhibit remarkable photothermal catalytic performance in reverse water-gas shift reaction. Under continuous full-spectrum light irradiation (3 W·cm-2) for a duration of 168 h, the nanosheets achieve a CO yield rate of 355 mmol·gcat-1·h-1 in a flow reactor with a selectivity exceeding 99%. This work offers valuable insights into the precise design of noble-metal-free active sites and the development of plasmonic catalysts for reducing carbon footprints.

2.
Biochem Biophys Res Commun ; 691: 149243, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38016338

RESUMEN

Cancer stem cells (CSCs), as parts of tumor initiation cells, play a crucial role to tumorigenesis, development and recurrence. However, the complicated mechanisms of CSCs to adapt to tumor microenvironment and its stemness maintenance remains unclear. Here, we show that oxidized ATM, a hypoxia-activated cytoplasm ATM, acts a novel function to maintain CSC stemness in triple-negative breast cancer cells (BCSCs) via regulating histone H4 acetylation. Mechanistically, oxidized ATM phosphorylates TRIM21 (a E3 ubiquitin ligase) serine 80 and serine 469. Serine 80 phosphorylation of TRIM21 is essential for the ubiquitination activity of TRIM21. TRIM21 binds with SIRT1 (one of deacetylase), resulting in ubiquitylation-mediated degradation of SIRT1. The reduced SIRT1 leads to increase of histone H4 acetylation, thus facilitating CSC-related gene expression. Clinical data verify that high level of ATM in breast tumors is positively correlated with malignant grade, and is closely related with low SIRT1, high p-TRIM21, and high CD44 expression. In conclusion, our study provides a novel mechanism by which oxidized ATM governing BCSCs stemness and reveals an important link among oxidized ATM, histone acetylation, and BCSCs maintenance.


Asunto(s)
Neoplasias de la Mama , Sirtuina 1 , Humanos , Femenino , Sirtuina 1/metabolismo , Acetilación , Neoplasias de la Mama/patología , Histonas/metabolismo , Ubiquitinación , Células Madre Neoplásicas/patología , Serina/metabolismo , Línea Celular Tumoral , Microambiente Tumoral , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
3.
J Exp Clin Cancer Res ; 42(1): 342, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102722

RESUMEN

BACKGROUND: More than 90% of the mortality of triple-negative breast cancer (TNBC) patients is attributed to cancer metastasis with organotropism. The lung is a frequent site of TNBC metastasis. However, the precise molecular mechanism for lung-specific metastasis of TNBC is not well understood. METHODS: RNA sequencing was performed to identify patterns of gene expression associated with lung metastatic behavior using 4T1-LM3, MBA-MB-231-LM3, and their parental cells (4T1-P, MBA-MB-231-P). Expressions of RGCC, called regulator of cell cycle or response gene to complement 32 protein, were detected in TNBC cells and tissues by qRT-PCR, western blotting, and immunohistochemistry. Kinase activity assay was performed to evaluate PLK1 kinase activity. The amount of phosphorylated AMP-activated protein kinase α2 (AMPKα2) was detected by immunoblotting. RGCC-mediated metabolism was determined by UHPLC system. Oxidative phosphorylation was evaluated by JC-1 staining and oxygen consumption rate (OCR) assay. Fatty acid oxidation assay was conducted to measure the status of RGCC-mediated fatty acid oxidation. NADPH and ROS levels were detected by well-established assays. The chemical sensitivity of cells was evaluated by CCK8 assay. RESULTS: RGCC is aberrantly upregulated in pulmonary metastatic cells. High level of RGCC is significantly related with lung metastasis in comparison with other organ metastases. RGCC can effectively promote kinase activity of PLK1, and the activated PLK1 phosphorylates AMPKα2 to facilitate TNBC lung metastasis. Mechanistically, the RGCC/PLK1/AMPKα2 signal axis increases oxidative phosphorylation of mitochondria to generate more energy, and promotes fatty acid oxidation to produce abundant NADPH. These metabolic changes contribute to sustaining redox homeostasis and preventing excessive accumulation of potentially detrimental ROS in metastatic tumor cells, thereby supporting TNBC cell survival and colonization during metastases. Importantly, targeting RGCC in combination with paclitaxel/carboplatin effectively suppresses pulmonary TNBC lung metastasis in a mouse model. CONCLUSIONS: RGCC overexpression is significantly associated with lung-specific metastasis of TNBC. RGCC activates AMPKα2 and downstream signaling through RGCC-driven PLK1 activity to facilitate TNBC lung metastasis. The study provides implications for RGCC-driven OXPHOS and fatty acid oxidation as important therapeutic targets for TNBC treatment.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Fosforilación Oxidativa , NADP/metabolismo , NADP/farmacología , NADP/uso terapéutico , Especies Reactivas de Oxígeno , Neoplasias Pulmonares/metabolismo , Ácidos Grasos/metabolismo , Proliferación Celular
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(10): 891-897, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37882712

RESUMEN

Objective To investigate the effects of paclitaxel and doxorubicin on the immune microenvironment of breast cancer in mice. Methods The CTR-DB database, a database for analysis of gene expression profiles and drug resistance characteristics related to tumor drug response, was used to analyze the effect of chemotherapeutic drugs on the immune microenvironment of breast cancer. Mouse models with breast cancer were established by in situ injection with 4T1 cells, a triple-negative breast cancer (TNBC) cells. Then they were treated with doxorubicin and paclitaxel, respectively. The sizes of tumor were recorded and analyzed by growth curve. The number of different types of immune cells was analyzed using flow cytometry. The expressions of Ki67, S100 calcium binding protein A9 (S100A9) and matrix metalloproteinase 9 (MMP9) were detected by immunohistochemistry. The cell cycles of 4T1 cells in paclitaxel group and doxorubicin group were analyzed by flow cytometry. Results The results of CTR_Microarray_75 analysis showed that the immune scores, and the number of cytotoxic lymphocytes, B lineages, CD8+ T cells, dendritic cells (DCs), monocytic lineages and natural killer (NK) cells in chemotherapy-sensitive breast cancer were higher than those in chemotherapy-insensitive breast cancer. Through growth curve analysis in mice with breast cancer, we found that both paclitaxel and doxorubicin could inhibit the increase of the tumor sizes, and the paclitaxel showed a higher inhibitory effect. The results of cytometry displayed that both paclitaxel and doxorubicin could restrain the expression of Ki67 and increase the number of breast cancer cells in G2/M phase, and in the paclitaxel group, the expression of Ki67 was lower and the number of breast cancer cells in G2/M phase was larger. Paclitaxel and doxorubicin enhanced the infiltration of CD45+ immune cells but decreased the infiltration of neutrophils. Additionally, paclitaxel promoted the infiltration of CD3+CD4+ T helper cells, CD3+CD8+ cytotoxic T cells and CD45+CD19+B cells, while doxorubicin increased the infiltration of CD4+CD25+ regulatory T cells (Tregs). The results of immunohistochemistry displayed that the paclitaxel significantly inhibited the expression of S100A9, while the doxorubicin significantly restrained the expression of MMP9. Conclusion Paclitaxel and doxorubicin can effectively inhibit the growth of breast cancer cells and change immune microenvironment of TNBC by regulating the different patterns of cell infiltration and the expression of different extracellular matrix components.


Asunto(s)
Paclitaxel , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Paclitaxel/farmacología , Metaloproteinasa 9 de la Matriz , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Linfocitos T CD8-positivos , Antígeno Ki-67 , Doxorrubicina/farmacología , Calgranulina B , Microambiente Tumoral
5.
Front Aging Neurosci ; 15: 1124710, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960422

RESUMEN

Objective: To conduct a meta-analysis of the effectiveness and safety of ginkgo biloba preparations combined with donepezil hydrochloride vs. donepezil for the treatment of Alzheimer's disease (AD). Methods: Three English databases (Cochrane Library, PubMed, EMBASE), and four Chinese databases [the China National Knowledge Infrastructure (CKNI), the Chinese Biomedical Literature database (CBM), the Chongqing VIP database, and WANFANG DATA)] were manually searched for literature published from the respective dates of inception of the databases to December 2022. The randomized controlled trials (RCTs) of ginkgo biloba preparations with donepezil hydrochloride vs. donepezil for the treatment of AD were included. Relevant literature was screened, and the data in the included studies were extracted for quality assessment according to the Risk of bias tool. The RevMan 5.3 software was used for meta-analysis. Results: A total of 1,642 participants were enrolled in the 18 RCTs. Of these, 842 were in the experimental group (ginkgo biloba preparations combined with donepezil hydrochloride) and 800 were in the control group (donepezil). The overall methodological quality of the included RCTs is poor due to the high risks of blindness and allocation concealment. The meta-analysis results showed statistically significant differences in several outcomes including Risk Ratio (RR) in change for clinical effectiveness rate (1.23, 95% CI 1.13, 1.34, P < 0.00001), mean difference (MD) in change for Mini-Mental State Examination score (3.02, 95% CI 2.14, 3.89, P < 0.00001), Activity of Daily Living Scale score (-4.56, 95% CI -5.09, -4.03, P < 0.00001), Hasegawa Dementia Scale score (2.04, 95% CI 1.74, 2.34, P < 0.00001), Montreal Cognitive Assessment score (2.38, 95% CI 0.72, 4.06, P = 0.005), between the experimental and control groups. But there is no statistically significant difference in change for adverse reaction (0.91, 95% CI 0.58, 1.42, P = 0.69). Conclusion: Ginkgo biloba preparations plus donepezil can improve clinical effectiveness rate and vocabulary memory outcomes. However, more relevant high-quality RCTs are needed in the future to validate these results. Systematic review registration: Identifier CRD42022378970.

6.
Theranostics ; 12(17): 7351-7370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438499

RESUMEN

Background: Metastasis is the leading cause of death in patients with breast cancer (BC). Primary tumors create a premetastatic niche (PMN) in secondary organs for subsequent metastases. Cancer-associated fibroblasts (CAFs) are a predominant stromal component in the tumor microenvironment and serve as a major contributor to tumor metastasis. However, the function and mechanism of primary CAFs in the premetastatic niche of secondary organs remain unclear in BC. Methods: We investigated the expression profiles of lncRNAs in pairs of CAFs and NFs derived from breast tumor tissues using lncRNA microarray. The expression levels of lncSNHG5, ZNF281, IGF2BP2, CCL2 and CCL5 were assessed by qRT-PCR; the protein levels of related genes (e.g., ZNF281, IGF2BP2, CCL2, and CCL5) were analyzed using western blotting and/or ELISA in primary and immortalized CAFs and clinical samples. Tubule formation and three-dimensional sprouting assays and tissue fluorescence staining were conducted to investigate angiogenesis. In vitro permeability assays, trans-endothelial invasion assays, in vivo permeability assays and tissue fluorescence staining were conducted to examine vascular permeability. The regulatory mechanism of lncSNHG5 was investigated by RNA sequencing, fluorescent in situ hybridization, cellular fractionation assay, mass spectrometry, RNA pull-down, RNA immunoprecipitation, gene-specific m6A assay, chromatin immunoprecipitation, dual luciferase reporter assay and actinomycin D treatment in CAFs and NFs. Results: LncSNHG5 was highly expressed in breast CAFs and played an essential role in premetastatic niche formation by promoting angiogenesis and vascular leakiness through regulation of ZNF281 in CAFs. lncSNHG5 enhanced ZNF281 mRNA stability by binding with the m6A reader IGF2BP2. Enhanced ZNF281 transcriptionally regulated CCL2 and CCL5 expression to activate P38 MAPK signaling in endothelial cells. High CCL2 and CCL5 expression was associated with tumor metastasis and poor prognosis in BC patients. The inhibitors RS102895, marasviroc and cenicriviroc inhibited angiogenesis and vascular permeability in the PMN by blocking the binding of CCL2/CCR2 and CCL5/CCR5. The lncSNHG5-ZNF281-CCL2/CCL5 signaling axis plays an essential role in inducing premetastatic niche formation to promote BC metastasis. Conclusions: Our work demonstrates that lncSNHG5 and its downstream signaling ZNF281-CCL2/CCL5 in CAFs play a crucial role in premetastatic niche formation in breast cancer and may serve as potential targets for the diagnosis and treatment of BC metastasis.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Permeabilidad Capilar , Neovascularización Patológica , ARN Largo no Codificante , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fibroblastos Asociados al Cáncer/metabolismo , Permeabilidad Capilar/genética , Permeabilidad Capilar/fisiología , Células Endoteliales/metabolismo , Hibridación Fluorescente in Situ , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Proteínas Represoras/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Microambiente Tumoral
9.
J Hematol Oncol ; 14(1): 178, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34715882

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) are considered as the major cause to tumor initiation, recurrence, metastasis, and drug resistance, driving poor clinical outcomes in patients. Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in cancer development and progression. However, limited lncRNAs involved in CSCs have been reported. METHODS: The novel lncROPM (a regulator of phospholipid metabolism) in breast CSCs (BCSCs) was identified by microarray and validated by qRT-PCR in BCSCs from breast cancer cells and tissues. The clinical significance of lncROPM was evaluated in two breast cancer cohorts and TANRIC database (TCGA-BRCA, RNAseq data). Gain- and loss-of-function assays were performed to examine the role of lncROPM on BCSCs both in vitro and in vivo. The regulatory mechanism of lncROPM was investigated by bioinformatics, RNA FISH, RNA pull-down, luciferase reporter assay, and actinomycin D treatment. PLA2G16-mediated phospholipid metabolism was determined by UHPLC-QTOFMS system. Cells' chemosensitivity was assessed by CCK8 assay. RESULTS: LncROPM is highly expressed in BCSCs. The enhanced lncROPM exists in clinic breast tumors and other solid tumors and positively correlates with malignant grade/stage and poor prognosis in breast cancer patients. Gain- and loss-of-function studies show that lncROPM is required for the maintenance of BCSCs properties both in vitro and in vivo. Mechanistically, lncROPM regulates PLA2G16 expression by directly binding to 3'-UTR of PLA2G16 to increase the mRNA stability. The increased PLA2G16 significantly promotes phospholipid metabolism and the production of free fatty acid, especially arachidonic acid in BCSCs, thereby activating PI3K/AKT, Wnt/ß-catenin, and Hippo/YAP signaling, thus eventually involving in the maintenance of BCSCs stemness. Importantly, lncROPM and PLA2G16 notably contribute to BCSCs chemo-resistance. Administration of BCSCs using clinic therapeutic drugs such as doxorubicin, cisplatin, or tamoxifen combined with Giripladib (an inhibitor of cytoplasmic phospholipase A2) can efficiently eliminate BCSCs and tumorigenesis. CONCLUSIONS: Our study highlights that lncROPM and its target PLA2G16 play crucial roles in sustaining BCSC properties and may serve as a biomarker for BCSCs or other cancer stem cells. Targeting lncROPM-PLA2G16 signaling axis may be a novel therapeutic strategy for patients with breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Metabolismo de los Lípidos , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Células Madre Neoplásicas/patología
10.
J Extracell Vesicles ; 10(11): e12146, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34545708

RESUMEN

Cancer-associated fibroblasts (CAFs) as a predominant cell component in the tumour microenvironment (TME) play an essential role in tumour progression. Our earlier studies revealed oxidized ATM activation in breast CAFs, which is independent of DNA double-strand breaks (DSBs). Oxidized ATM has been found to serve as a redox sensor to maintain cellular redox homeostasis. However, whether and how oxidized ATM in breast CAFs regulates breast cancer progression remains poorly understood. In this study, we found that oxidized ATM phosphorylates BNIP3 to induce autophagosome accumulation and exosome release from hypoxic breast CAFs. Inhibition of oxidized ATM kinase by KU60019 (a small-molecule inhibitor of activated ATM) or shRNA-mediated knockdown of endogenous ATM or BNIP3 blocks autophagy and exosome release from hypoxic CAFs. We also show that oxidized ATM phosphorylates ATP6V1G1, a core proton pump in maintaining lysosomal acidification, leading to lysosomal dysfunction and autophagosome fusion with multi-vesicular bodies (MVB) but not lysosomes to facilitate exosome release. Furthermore, autophagy-associated GPR64 is enriched in hypoxic CAFs-derived exosomes, which stimulates the non-canonical NF-κB signalling to upregulate MMP9 and IL-8 in recipient breast cancer cells, enabling cancer cells to acquire enhanced invasive abilities. Collectively, these results provide novel insights into the role of stromal CAFs in promoting tumour progression and reveal a new function of oxidized ATM in regulating autophagy and exosome release.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Exosomas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Autofagia , Femenino , Humanos , Ratones , Ratones Desnudos , Invasividad Neoplásica
11.
Oncogene ; 40(24): 4198-4213, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079084

RESUMEN

Invasion and metastasis are the leading causes of death in patients with breast cancer (BC), and epithelial-mesenchymal transformation (EMT) plays an essential role in this process. Here, we found that Lnc-408, a novel long noncoding RNA (lncRNA), is significantly upregulated in BC cells undergoing EMT and in BC tumor with lymphatic metastases compared with those without lymphatic metastases. Lnc-408 can enhance BC invasion and metastasis by regulating the expression of LIMK1. Mechanistically, Lnc-408 serves as a sponge for miR-654-5p to relieve the suppression of miR-654-5p on its target LIMK1. Knockdown or knockout of Lnc-408 in invasive BC cells clearly decreased LIMK1 levels, and ectopic Lnc-408 in MCF-7 cells increased LIMK1 expression to promote cell invasion. Lnc-408-mediated enhancement of LIMK1 plays a key role in cytoskeletal stability and promotes invadopodium formation in BC cells via p-cofilin/F-actin. In addition, the increased LIMK1 also facilitates the expression of MMP2, ITGB1, and COL1A1 by phosphorylating CREB. In conclusion, our findings reveal that Lnc-408 promotes BC invasion and metastasis via the Lnc-408/miR-654-5p/LIMK1 axis, highlighting a novel promising target for the diagnosis and treatment of BC.


Asunto(s)
Neoplasias de la Mama/genética , Movimiento Celular/genética , Quinasas Lim/genética , Metástasis de la Neoplasia/genética , ARN Largo no Codificante/genética , Apoptosis/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , MicroARNs/genética , Metástasis de la Neoplasia/patología , Regulación hacia Arriba/genética
12.
J Exp Clin Cancer Res ; 40(1): 168, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990217

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with poor prognosis and limited treatment options. Hypoxia is a key hallmark of TNBC. Metabolic adaptation promotes progression of TNBC cells that are located within the hypoxic tumor regions. However, it is not well understood regarding the precise molecular mechanisms underlying the regulation of metabolic adaptions by hypoxia. METHODS: RNA sequencing was performed to analyze the gene expression profiles in MDA-MB-231 cell line (20% O2 and 1% O2). Expressions of Slc6a8, which encodes the creatine transporter protein, were detected in breast cancer cells and tissues by quantitative real-time PCR. Immunohistochemistry was performed to detect SLC6A8 protein abundances in tumor tissues. Clinicopathologic correlation and overall survival were evaluated by chi-square test and Kaplan-Meier analysis, respectively. Cell viability assay and flow cytometry analysis with Annexin V/PI double staining were performed to investigate the impact of SLC6A8-mediated uptake of creatine on viability of hypoxic TNBC cells. TNBC orthotopic mouse model was used to evaluate the effects of creatine in vivo. RESULTS: SLC6A8 was aberrantly upregulated in TNBC cells in hypoxia. SLC6A8 was drastically overexpressed in TNBC tissues and its level was tightly associated with advanced TNM stage, higher histological grade and worse overall survival of TNBC patients. We found that SLC6A8 was transcriptionally upregulated by p65/NF-κB and mediated accumulation of intracellular creatine in hypoxia. SLC6A8-mediated accumulation of creatine promoted survival and suppressed apoptosis via maintaining redox homeostasis in hypoxic TNBC cells. Furthermore, creatine was required to facilitate tumor growth in xenograft mouse models. Mechanistically, intracellular creatine bolstered cell antioxidant defense by reducing mitochondrial activity and oxygen consumption rates to reduce accumulation of intracellular reactive oxygen species, ultimately activating AKT-ERK signaling, the activation of which protected the viability of hypoxic TNBC cells via mediating the upregulation of Ki-67 and Bcl-2, and the downregulation of Bax and cleaved Caspase-3. CONCLUSIONS: Our study indicates that SLC6A8-mediated creatine accumulation plays an important role in promoting TNBC progression, and may provide a potential therapeutic strategy option for treatment of SLC6A8 high expressed TNBC.


Asunto(s)
Creatina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Persona de Mediana Edad , Estrés Oxidativo , Neoplasias de la Mama Triple Negativas/patología
13.
Cell Death Differ ; 28(9): 2708-2727, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33875796

RESUMEN

The aberrant classical miRNAs are considered to play significant roles in tumor progression. However, it remains unclear for nonclassical miRNAs, a set of Drosha-independent miRNAs in the process of various biology. Here, we reveal that a nonclassical miR-4646-5p plays a pivotal role in gastric cancer (GC) metastasis. MiR-4646-5p, one of Drosha-independent mirtronic miRNA, is aberrant up-regulated in Drosha-low expressed GC and Drosha-knockdown gastric cancer cells. Mirtronic miR-4646-5p is a specific transcription splicing product of intron 3 of the host gene Abhd16a with the aid of SRSF2. The enhanced miR-4646-5p can stabilize HIF1A by targeting PHD3 to positive feedback regulate Abhd16a and miR-4646-5p itself expressions. ABHD16A, as an emerging phosphatidylserine-specific lipase, involves in lipid metabolism leading to lysophosphatidylserines (lyso-PSs) accumulation, which stimulates RhoA and downstream LIMK/cofilin cascade activity through GPR34/Gi subunit, thus causes metastasis of gastric cancer. In addition, miR-4646-5p/PHD3/HIF1A signaling can also up-regulate RhoA expression and synergistically promote gastric cancer cell invasion and metastasis. Our study provides new insights of nonclassical mirtronic miRNA on tumor progress and may serve as a new diagnostic biomarker for gastric cancer. MiR-4646-5p and its host gene Abhd16a mediated abnormal lipid metabolism may be a new target for clinical treatment of gastric cancer.


Asunto(s)
Lisofosfolípidos/metabolismo , Metabolómica/métodos , Monoacilglicerol Lipasas/metabolismo , Neoplasias Gástricas/genética , Animales , Humanos , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Neoplasias Gástricas/patología , Transfección
14.
Theranostics ; 11(10): 4975-4991, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33754039

RESUMEN

Cancer-associated fibroblasts (CAFs), a predominant component of the tumor microenvironment, contribute to aggressive angiogenesis progression. In clinical practice, traditional anti-angiogenic therapy, mainly anti-VEGF, provides extremely limited beneficial effects to breast cancer. Here, we reveal that FOS-like 2 (FOSL2), a transcription factor in breast CAFs, plays a critical role in VEGF-independent angiogenesis in stromal fibroblasts. Methods: FOSL2 and Wnt5a expression was assessed by qRT-PCR, western blotting and immunohistochemistry in primary and immortalized CAFs and clinical samples. FOSL2- or Wnt5a-silenced CAFs and FOSL2-overexpressing NFs were established to explore their proangiogenic effects. Invasion, tubule formation, three-dimensional sprouting assays, and orthotopic xenografts were conducted as angiogenesis experiments. FZD5/NF-κB/ERK signaling activation was evaluated by western blotting after blocking VEGF/VEGFR with an anti-VEGF antibody and axitinib. Dual luciferase reporter assays and chromatin immunoprecipitation were performed to test the role of FOSL2 in regulating Wnt5a expression, and Wnt5a in the serum of the patients was measured to assess its clinical diagnostic value for breast cancer patients. Results: Enhanced FOSL2 in breast CAFs was significantly associated with angiogenesis and clinical progression in patients. The supernatant from CAFs highly expressing FOSL2 strongly promoted tube formation and sprouting of human umbilical vein endothelial cells (HUVECs) in a VEGF-independent manner and angiogenesis as well as tumor growth in vivo. Mechanistically, the enhanced FOSL2 in CAFs was regulated by estrogen/cAMP/PKA signaling. Wnt5a, a direct target of FOSL2, specifically activated FZD5/NF-κB/ERK signaling in HUVECs to promote VEGF-independent angiogenesis. In addition, a high level of Wnt5a was commonly detected in the serum of breast cancer patients and closely correlated with microvessel density in breast tumor tissues, suggesting a promising clinical value of Wnt5a for breast cancer diagnostics. Conclusion: FOSL2/Wnt5a signaling plays an essential role in breast cancer angiogenesis in a VEGF-independent manner, and targeting the FOSL2/Wnt5a signaling axis in CAFs may offer a potential option for antiangiogenesis therapy.


Asunto(s)
Neoplasias de la Mama/genética , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma/genética , Antígeno 2 Relacionado con Fos/genética , Neovascularización Patológica/genética , Proteína Wnt-5a/genética , Animales , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/metabolismo , Carcinoma/irrigación sanguínea , Carcinoma/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Activación Transcripcional/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Oncogene ; 40(9): 1609-1627, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33469161

RESUMEN

The hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Autorrenovación de las Células/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células Madre Neoplásicas/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/genética
16.
Adv Sci (Weinh) ; 8(2): 2002232, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33511005

RESUMEN

Cancer stem cells (CSCs) are considered the roots of cancer metastasis and recurrence (CSCs), due in part to their self-renewal and therapy resistance properties. However, the underlying mechanisms for the regulation of CSC stemness are poorly understood. Recently, increasing evidence shows that long non-coding RNAs (lncRNAs) are critical regulators for cancer cell function in various malignancies including breast cancer, but how lncRNAs regulate the function of breast cancer stem cells (BCSCs) remains to be determined. Herein, using lncRNA/mRNA microarray assays, a novel lncRNA (named lnc030) is identified, which is highly expressed in BCSCs in vitro and in vivo, as a pivotal regulator in maintaining BCSC stemness and promoting tumorigenesis. Mechanistically, lnc030 cooperates with poly(rC) binding protein 2(PCBP2) to stabilize squalene epoxidase (SQLE) mRNA, resulting in an increase of cholesterol synthesis. The increased cholesterol in turn actives PI3K/Akt signaling, which governs BCSC stemness. In summary, these findings demonstrate that a new, lnc030-based mechanism for regulating cholesterol synthesis and stemness properties of BCSCs. The lnc030-SQLE-cholesterol synthesis pathway may serve as an effective therapeutic target for BCSC elimination and breast cancer treatment.

17.
J Adv Res ; 28: 195-208, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33364056

RESUMEN

JUP, a homologue of ß-catenin, is a cell-cell junction protein involved in adhesion junction and desmosome composition. JUP may have a controversial role in different malignancies dependence of its competence with or collaboration with ß-catenin as a transcription factor. In this study, we reveal that the function of JUP is related to its cellular location in GC development process from epithelium-like, low malignant GC to advanced EMT-phenotypic GC. Gradual loss of membrane and/or cytoplasm JUP is closely correlated with GC malignancy and poor prognostics. Knockdown of JUP in epithelium-like GC cells causes EMT and promotes GC cell migration and invasion. Ectopic expression of wild JUP in malignant GC cells leads to an attenuated malignant phenotype such as reduced cell invasive potential. In mechanism, loss of membrane and/or cytoplasm JUP abolishes the restrain of JUP to EGFR at cell membrane and results in increased p-AKT levels and AKT/GSK3ß/ß-catenin signaling activity. In addition, nuclear JUP interacts with nuclear ß-catenin and TCF4 and plays a synergistic role with ß-catenin in promoting TCF4 transcription and its downstream target MMP7 expression to fuel GC cell invasion.

18.
Cell Death Dis ; 11(7): 508, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32641713

RESUMEN

Cancer stem cell (CSC) is a challenge in the therapy of triple-negative breast cancer (TNBC). Intratumoral hypoxia is a common feature of solid tumor. Hypoxia may contribute to the maintenance of CSC, resulting in a poor efficacy of traditional treatment and recurrence of TNBC cases. However, the underlying molecular mechanism involved in hypoxia-induced CSC stemness maintenance remains unclear. Here, we report that hypoxia stimulated DNA double-strand breaks independent of ATM kinase activation (called oxidized ATM in this paper) play a crucial role in TNBC mammosphere formation and stemness maintenance by governing a specific energy metabolism reprogramming (EMR). Oxidized ATM up-regulates GLUT1, PKM2, and PDHa expressions to enhance the uptake of glucose and production of pyruvate rather than lactate products, which facilitates glycolytic flux to mitochondrial pyruvate and citrate, thus resulting in accumulation of cytoplasmic acetyl-CoA instead of the tricarboxylic acid (TCA) cycle by regulating ATP-citrate lyase (ACLY) activity. Our findings unravel a novel model of TNBC-CSC glucose metabolism and its functional role in maintenance of hypoxic TNBC-CSC stemness. This work may help us to develop new therapeutic strategies for TNBC treatment.


Asunto(s)
Acetilcoenzima A/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Metabolismo Energético , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Acetilación , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Ratones Desnudos , Modelos Biológicos , Oxidación-Reducción , Neoplasias de la Mama Triple Negativas/genética , Hipoxia Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cancer Lett ; 478: 8-21, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32142918

RESUMEN

Drosha-dependent canonical microRNAs (miRNAs) play a crucial role in the biological functions and development of cancer. However, the effects of Drosha-independent non-canonical miRNAs remain poorly understood. In our previous work, we found a set of aberrant miRNAs, including some upregulated miRNAs, called Drosha-independent noncanonical miRNAs, in Drosha-knockdown gastric cancer (GC) cells. Surprisingly, Drosha-silenced GC cells still retained strong malignant properties (e.g., proliferation ability and cancer stem cell (CSC) characteristics), indicating that aberrantly upregulated non-canonical miRNAs may play an important role in the maintenance of the malignant properties in GC cells that express low Drosha levels. Here, we report that miR-6778-5p, a noncanonical miRNA, acts as a crucial regulator for maintenance of CSC stemness in Drosha-silenced GC cells. MiR-6778-5p belongs to the 5'-tail mirtron type of non-canonical miRNAs and is transcript splice-derived from intron 5 of SHMT1 (coding cytoplasmic serine hydroxymethyltransferase). It positively regulates expression of its host gene, SHMT1, via targeting YWHAE in Drosha-knockdown GC cells. Similar to its family member SHMT2, SHMT1 plays a crucial role in folate-dependent serine/glycine inter-conversion in one-carbon metabolism. In Drosha wild type GC cells, SHMT2 mediates a mitochondrial-carbon metabolic pathway, which is a major pathway of one-carbon metabolism in normal cells and most cancer cells. However, in Drosha-silenced or Drosha low-expressing GC cells, miR-6778-5p positively regulates SHMT1, instead of SHMT2, thus mediating a compensatory activation of cytoplasmic carbon metabolism that plays an essential role in the maintenance of CSCs in gastric cancer (GCSCs). Drosha wild type GCSCs with SHMT2 are sensitive to 5-fluorouracil; however, Drosha low-expressing GCSCs with SHMT1 are 5-FU-resistant. The loss of miR-6778-5p or SHMT1 notably mitigates GCSC sphere formation and increases sensitivity to 5-fluorouracil in Drosha-knockdown gastric cancer cells. Thus, our study reveals a novel function of Drosha-independent noncanonical miRNAs in maintaining the stemness of GCSCs.


Asunto(s)
Carbono/metabolismo , Ácido Fólico/metabolismo , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Ribonucleasa III/genética , Neoplasias Gástricas/patología , Proteínas 14-3-3/genética , Animales , Línea Celular Tumoral , Citosol , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicina Hidroximetiltransferasa/genética , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulación hacia Arriba
20.
FASEB J ; 34(3): 4557-4572, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32030797

RESUMEN

Triple-negative breast cancer (TNBC) is a group of breast cancer with heterogeneity and poor prognosis and effective therapeutic targets are not available currently. TNBC has been recognized as estrogen-independent breast cancer, while the novel estrogen receptor, namely G protein-coupled estrogen receptor (GPER), was claimed to mediate estrogenic actions in TNBC tissues and cell lines. Through mRNA microarrays, lncRNA microarrays, and bioinformatics analysis, we found that GPER is activated by 17ß-estradiol (E2) and GPER-specific agonist G1, which downregulates a novel lncRNA (termed as lncRNA-Glu). LncRNA-Glu can inhibit glutamate transport activity and transcriptional activity of its target gene VGLUT2 via specific binding. GPER-mediated reduction of lncRNA-Glu promotes glutamate transport activity and transcriptional activity of VGLUT2. Furthermore, GPER-mediated activation of cAMP-PKA signaling contributes to glutamate secretion. LncRNA-Glu-VGLUT2 signaling synergizes with cAMP-PKA signaling to increase autologous glutamate secretion in TNBC cells, which activates glutamate N-methyl-D-aspartate receptor (NMDAR) and its downstream CaMK and MEK-MAPK pathways, thus enhancing cellular invasion and metastasis in vitro and in vivo. Our data provide new insights into GPER-mediated glutamate secretion and its downstream signaling NMDAR-CaMK/MEK-MAPK during TNBC invasion. The mechanisms we discovered may provide new targets for clinical therapy of TNBC.


Asunto(s)
Ácido Glutámico/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Desnudos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...