Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Jpn J Infect Dis ; 76(3): 197-203, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-36858599

RESUMEN

Receptor-interacting serine/threonine kinase (RIPK) is associated with cellular inflammation and immune regulation. The current study explored the role of RIPK2 in osteomyelitis and the potential upstream targets of RIPK2. A Staphylococcus aureus-induced osteomyelitis mouse model was established using wild-type (WT) and ubiquitin-specific peptidase 8 (USP8)-deficient (USP-/-) mice, and the osteomyelitis-related symptoms were evaluated. Bone marrow-derived macrophages (BMDMs) were isolated from the WT and USP-/- mice. Enzyme-linked immunosorbent assays, quantitative polymerase chain reaction, and immunoblot analysis were used to determine the levels of target biomarkers, which were induced by lipopolysaccharide (LPS), CpG, or PAM3CSK4. USP8 promoted RIPK2-mediated NF-κB activation. USP8 is indispensable for RIPK2-mediated LPS-induced NF-κB activation in BMDMs. USP8 is required for the production of inflammatory cytokines induced by LPS, CpG, or PAM3CSK4 in BMDMs. In addition, USP-/- mice exhibited ameliorated symptoms, including less body weight and cortical bone loss, and reduced bacterial load and reactive bone formation in the S. aureus-induced osteomyelitis mouse model. USP8 is critical in the S. aureus-induced osteomyelitis mouse model by targeting RIPK2 ubiquitination.


Asunto(s)
Enfermedades Transmisibles , Osteomielitis , Ratones , Animales , FN-kappa B , Lipopolisacáridos/farmacología , Staphylococcus aureus , Ubiquitinación , Proteasas Ubiquitina-Específicas/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor
2.
J Cell Physiol ; 237(1): 815-823, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34378805

RESUMEN

Merlin is known as a tumor suppressor, while its role in osteomyelitis remains unclear. This study aimed to investigate the role of Merlin in Staphylococcus aureus-induced osteomyelitis and its underlying mechanisms. S. aureus-induced osteomyelitis mouse model was established in Merlinfl/fl Lyz2cre/+ and Merlinfl/fl Lyz2+/+ mice. Bone marrow-derived macrophages (BMDMs) were isolated and stimulated by lipopolysaccharide (LPS). Bioassays, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot analysis, and enzyme-linked immunosorbent assays, were conducted to determine the levels of target genes or proteins. Immunoprecipitation was applied to determine the interactions between proteins. DCAF1fl/fl mice were further crossed with Lyz2-Cre mice to establish myeloid cell conditional knockout mice (DCAF1fl/fl Lyz2cre/+ ). It was found that the level of Merlin was elevated in patients with osteomyelitis and S. aureus-infected BMDMs. Merlin deficiency in macrophages suppressed the production of inflammatory cytokines and ameliorated the symptoms of osteomyelitis induced by S. aureus. Merlin deficiency in macrophages also suppressed the production of proinflammatory cytokines in BMDMs induced by LPS. The inhibitory effects of Merlin deficiency on the inflammatory response were associated with DDB1-Cul4-associated factor 1 (DCAF1). In summary, Merlin deficiency ameliorates S. aureus-induced osteomyelitis through the regulation of DCAF1.


Asunto(s)
Osteomielitis , Infecciones Estafilocócicas , Animales , Citocinas , Humanos , Lipopolisacáridos/farmacología , Ratones , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA