Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 58(12): 1052-1070.e10, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37105173

RESUMEN

Organismal homeostasis and regeneration are predicated on committed stem cells that can reside for long periods in a mitotically dormant but reversible cell-cycle arrest state defined as quiescence. Premature escape from quiescence is detrimental, as it results in stem cell depletion, with consequent defective tissue homeostasis and regeneration. Here, we report that Polycomb Ezh1 confers quiescence to murine muscle stem cells (MuSCs) through a non-canonical function. In the absence of Ezh1, MuSCs spontaneously exit quiescence. Following repeated injuries, the MuSC pool is progressively depleted, resulting in failure to sustain proper muscle regeneration. Rather than regulating repressive histone H3K27 methylation, Ezh1 maintains gene expression of the Notch signaling pathway in MuSCs. Selective genetic reconstitution of the Notch signaling corrects stem cell number and re-establishes quiescence of Ezh1-/- MuSCs.


Asunto(s)
Transducción de Señal , Células Madre , Ratones , Animales , División Celular , Puntos de Control del Ciclo Celular , Músculos
2.
Mol Cell ; 71(1): 129-141.e8, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29979962

RESUMEN

The enhancer regions of the myogenic master regulator MyoD give rise to at least two enhancer RNAs. Core enhancer eRNA (CEeRNA) regulates transcription of the adjacent MyoD gene, whereas DRReRNA affects expression of Myogenin in trans. We found that DRReRNA is recruited at the Myogenin locus, where it colocalizes with Myogenin nascent transcripts. DRReRNA associates with the cohesin complex, and this association correlates with its transactivating properties. Despite being expressed in undifferentiated cells, cohesin is not loaded on Myogenin until the cells start expressing DRReRNA, which is then required for cohesin chromatin recruitment and maintenance. Functionally, depletion of either cohesin or DRReRNA reduces chromatin accessibility, prevents Myogenin activation, and hinders muscle cell differentiation. Thus, DRReRNA ensures spatially appropriate cohesin loading in trans to regulate gene expression.


Asunto(s)
Proteínas de Ciclo Celular/biosíntesis , Proteínas Cromosómicas no Histona/biosíntesis , Elementos de Facilitación Genéticos , Músculo Esquelético/metabolismo , Miogenina/biosíntesis , ARN no Traducido/metabolismo , Transcripción Genética , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Células HEK293 , Humanos , Ratones , Músculo Esquelético/citología , Proteína MioD/biosíntesis , Proteína MioD/genética , Miogenina/genética , ARN no Traducido/genética , Cohesinas
3.
Mol Cell ; 68(2): 398-413.e6, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29033324

RESUMEN

Spt6 coordinates nucleosome dis- and re-assembly, transcriptional elongation, and mRNA processing. Here, we report that depleting Spt6 in embryonic stem cells (ESCs) reduced expression of pluripotency factors, increased expression of cell-lineage-affiliated developmental regulators, and induced cell morphological and biochemical changes indicative of ESC differentiation. Selective downregulation of pluripotency factors upon Spt6 depletion may be mechanistically explained by its enrichment at ESC super-enhancers, where Spt6 controls histone H3K27 acetylation and methylation and super-enhancer RNA transcription. In ESCs, Spt6 interacted with the PRC2 core subunit Suz12 and prevented H3K27me3 accumulation at ESC super-enhancers and associated promoters. Biochemical as well as functional experiments revealed that Spt6 could compete for binding of the PRC2 methyltransferase Ezh2 to Suz12 and reduce PRC2 chromatin engagement. Thus, in addition to serving as a histone chaperone and transcription elongation factor, Spt6 counteracts repression by opposing H3K27me3 deposition at critical genomic regulatory regions.


Asunto(s)
Regulación hacia Abajo , Elementos de Facilitación Genéticos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Línea Celular , Proteína Potenciadora del Homólogo Zeste 2/genética , Histonas/genética , Histonas/metabolismo , Ratones , Complejo Represivo Polycomb 2/genética , Factores de Transcripción/genética
4.
Cell Rep ; 14(5): 1156-1168, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26832413

RESUMEN

Histone variants complement and integrate histone post-translational modifications in regulating transcription. The histone variant macroH2A1 (mH2A1) is almost three times the size of its canonical H2A counterpart, due to the presence of an ∼25 kDa evolutionarily conserved non-histone macro domain. Strikingly, mH2A1 can mediate both gene repression and activation. However, the molecular determinants conferring these alternative functions remain elusive. Here, we report that mH2A1.2 is required for the activation of the myogenic gene regulatory network and muscle cell differentiation. H3K27 acetylation at prospective enhancers is exquisitely sensitive to mH2A1.2, indicating a role of mH2A1.2 in imparting enhancer activation. Both H3K27 acetylation and recruitment of the transcription factor Pbx1 at prospective enhancers are regulated by mH2A1.2. Overall, our findings indicate a role of mH2A1.2 in marking regulatory regions for activation.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Epigénesis Genética , Redes Reguladoras de Genes , Genoma , Células HEK293 , Humanos , Ratones , Células Musculares/citología , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Unión Proteica/genética , Transcripción Genética , Transcriptoma/genética
5.
Mol Cell ; 51(1): 5-19, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23747011

RESUMEN

Kinase activation and substrate phosphorylation commonly form the backbone of signaling cascades. Bone morphogenetic proteins (BMPs), a subclass of TGF-ß family ligands, induce activation of their signaling effectors, the Smads, through C-terminal phosphorylation by transmembrane receptor kinases. However, the slow kinetics of Smad activation in response to BMP suggests a preceding step in the initiation of BMP signaling. We now show that arginine methylation, which is known to regulate gene expression, yet also modifies some signaling mediators, initiates BMP-induced Smad signaling. BMP-induced receptor complex formation promotes interaction of the methyltransferase PRMT1 with the inhibitory Smad6, resulting in Smad6 methylation and relocalization at the receptor, leading to activation of effector Smads through phosphorylation. PRMT1 is required for BMP-induced biological responses across species, as evidenced by the role of its ortholog Dart1 in BMP signaling during Drosophila wing development. Activation of signaling by arginine methylation may also apply to other signaling pathways.


Asunto(s)
Arginina/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Línea Celular , Células HEK293 , Humanos , Metilación , Fosforilación , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/fisiología , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Proteína smad6/análisis , Proteína smad6/química , Proteína smad6/metabolismo
6.
EMBO J ; 32(8): 1075-86, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23503590

RESUMEN

Histone chaperones affect chromatin structure and gene expression through interaction with histones and RNA polymerase II (PolII). Here, we report that the histone chaperone Spt6 counteracts H3K27me3, an epigenetic mark deposited by the Polycomb Repressive Complex 2 (PRC2) and associated with transcriptional repression. By regulating proper engagement and function of the H3K27 demethylase KDM6A (UTX), Spt6 effectively promotes H3K27 demethylation, muscle gene expression, and cell differentiation. ChIP-Seq experiments reveal an extensive genome-wide overlap of Spt6, PolII, and KDM6A at transcribed regions that are devoid of H3K27me3. Mammalian cells and zebrafish embryos with reduced Spt6 display increased H3K27me3 and diminished expression of the master regulator MyoD, resulting in myogenic differentiation defects. As a confirmation for an antagonistic relationship between Spt6 and H3K27me3, inhibition of PRC2 permits MyoD re-expression in myogenic cells with reduced Spt6. Our data indicate that, through cooperation with PolII and KDM6A, Spt6 orchestrates removal of H3K27me3, thus controlling developmental gene expression and cell differentiation.


Asunto(s)
Histona Demetilasas/metabolismo , Histonas/metabolismo , Desarrollo de Músculos , ARN Polimerasa II/metabolismo , Animales , Diferenciación Celular , Línea Celular , Inmunoprecipitación de Cromatina , Metilación , Ratones , Factores de Transcripción , Pez Cebra
7.
Mol Cell ; 45(2): 255-62, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22196887

RESUMEN

Polycomb group (PcG) proteins initiate the formation of repressed chromatin domains and regulate developmental gene expression. A mammalian PcG protein, enhancer of zeste homolog 2 (Ezh2), triggers transcriptional repression by catalyzing the addition of methyl groups onto lysine 27 of histone H3 (H3K27me2/3). This action facilitates the binding of other PcG proteins to chromatin for purposes of transcriptional silencing. Interestingly, there exists a paralog of Ezh2, termed Ezh1, whose primary function remains unclear. Here, we provide evidence for genome-wide association of Ezh1 complex with active epigenetic mark (H3K4me3), RNA polymerase II (Pol II), and mRNA production. Ezh1 depletion reduced global Pol II occupancy within gene bodies and resulted in delayed transcriptional activation during differentiation of skeletal muscle cells. Conversely, overexpression of wild-type Ezh1 led to premature gene activation and rescued Pol II occupancy defects in Ezh1-depleted cells. Collectively, these findings reveal a role for a PcG complex in promoting mRNA transcription.


Asunto(s)
Proteínas de Unión al ADN/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Extensión de la Cadena Peptídica de Translación/fisiología , ARN Polimerasa II/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metilación , Ratones , Desarrollo de Músculos , Complejo Represivo Polycomb 2 , Interferencia de ARN , ARN Polimerasa II/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...