Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Org Chem ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38828704

An oxidative free-radical C(sp2)-H bond chlorination strategy of enaminones has been developed by using LiCl as a chlorinating reagent and K2S2O8 as an oxidant. This transformation provides a new and straightforward synthetic methodology to afford highly functionalized α-chlorinated enaminones with a Z-configuration in good to excellent yields.

2.
J Hazard Mater ; 469: 134094, 2024 May 05.
Article En | MEDLINE | ID: mdl-38518698

Peroxynitrite (ONOO-) is one of the important active nitrogen/reactive oxygen species that plays various roles in biological processes, such as inducing apoptosis and necrosis. Recent studies have shown that a significant increases in ONOO- content during tumor development, which is closely related to the level of oxidative stress within the tumor. It has been found that herbicide paraquat (PQ) can significantly increase the level of ONOO- in cells. Therefore, accurate monitoring abnormal changes in ONOO- caused by environmental hazardous materials and tumors is helpful in promoting the diagnosis and treatment of oxidative stress diseases (tumors), evenly environmental detection. Currently, traditional fluorescent probes for ONOO- detection have background interference. To address this, we developed a chemiluminescent probe (CL-1) and a fluorescent probe (Flu-1), using diphenyl phosphonate as a recognition group. CL-1 shows extremely sensitivity (9.8 nM), a high signal-to-noise(S/N) ratio (502), and excellent bioimaging capabilities compared to fluorescent probe (Flu-1). We have successfully used CL-1 to detect ONOO- produced by PQ stimulated cells, as well as endogenous ONOO- in tumor cells, mice, and human liver cancer tissues. Therefore, CL-1 can not only be a valuable tool for visualizing tumor and studying the role of ONOO- in tumor pathology, but the probe has the potential to be a powerful molecular imaging tool for exploring the complex biological role of ONOO- in a variety of biological Settings.


Fluorescent Dyes , Liver Neoplasms , Humans , Mice , Animals , Peroxynitrous Acid , Necrosis
3.
ACS Appl Mater Interfaces ; 15(29): 34505-34512, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37378515

Biothiols are biomolecules found in a higher content in cancer cells compared to normal cells, marking them useful cancer biomarkers. Chemiluminescence is widely used in biological imaging due to its excellent sensitivity and signal-to-noise ratio (SNR). In this study, we designed and prepared a chemiluminescent probe that is activated by a thiol-chromene "click" nucleophilic reaction. This probe is initially chemiluminescent but turned off and releases extremely strong chemiluminescence in the presence of thiols. It has high selectivity to thiol compared with other analytes. Real-time imaging of mice tumor sites showed significant chemiluminescence after the probe was injected, and the chemiluminescence of osteosarcoma tissues was also significantly stronger than that in adjacent tissues. We conclude that this chemiluminescent probe has potential to detect thiol, diagnose cancer, especially in its early stages, and aid in the development of related cancer drugs.


Neoplasms , Sulfhydryl Compounds , Animals , Mice , Benzopyrans , Luminescence , Fluorescent Dyes
4.
Acta Pharm Sin B ; 12(9): 3667-3681, 2022 Sep.
Article En | MEDLINE | ID: mdl-36176917

Toll-like receptor 3 (TLR3), as an important pattern recognition receptor (PRR), dominates the innate and adaptive immunity regulating many acute and chronic inflammatory diseases. Atherosclerosis is proved as an inflammatory disease, and inflammatory events involved in the entire process of initiation and deterioration. However, the contribution of TLR3 to atherosclerosis remains unclear. Herein, we identified the clinical relevance of TLR3 upregulation and disease processes in human atherosclerosis. Besides, activation of TLR3 also directly led to significant expression of atherogenic chemokines and adhesion molecules. Conversely, silencing TLR3 inhibited the uptake of oxLDL by macrophages and significantly reduced foam cell formation. Given the aberrance in TLR3 functions on atherosclerosis progression, we hypothesized that TLR3 could serve as novel target for clinical atherosclerosis therapy. Therefore, we developed the novel ellipticine derivative SMU-CX24, which specifically inhibited TLR3 (IC50 = 18.87 ± 2.21 nmol/L). In vivo, atherosclerotic burden was alleviated in Western diet fed ApoE-/- mice in response to SMU-CX24 treatment, accompanying notable reductions in TLR3 expression and inflammation infiltration within atherosclerotic lesion. Thus, for the first time, we revealed that pharmacological downregulation of TLR3 with specific inhibitor regenerated inflammatory environment to counteract atherosclerosis progression, thereby proposing a new strategy and probe for atherosclerosis therapy.

5.
Anal Chem ; 94(30): 10737-10744, 2022 08 02.
Article En | MEDLINE | ID: mdl-35876030

Cysteine (Cys) plays an important role in many physiological activities of human beings. Various diseases are always accompanied by abnormal levels of Cys. A series of Cys-responsive probes were recently developed. However, most fluorescent probes have many disadvantages and exhibit poor in vivo imaging. Therefore, a near-infrared fluorescence (NIRF)/photoacoustic (PA) dual-mode probe with high selectivity and sensitivity (limit of detection = 10.6 nM) toward Cys was developed in this study. The new Probe I interacted with Cys to activate NIRF/PA signals, detecting Cys in vitro with a large emission wavelength (851 nm) and Stokes shift (191 nm), monitoring the occurrence of liver cancer in vivo. This work not only presented an effective NIRF/PA dual-mode dicyanoisophorone probe for the first time in the imaging of Cys but also provided a comprehensive and accurate tool for detecting different analytes and tumors in deeper tissues, which could be conducive to the early diagnosis of diseases.


Cysteine , Fluorescent Dyes , HeLa Cells , Humans , Microscopy, Fluorescence/methods , Optical Imaging , Spectrum Analysis
6.
Chem Sci ; 13(8): 2324-2330, 2022 Feb 23.
Article En | MEDLINE | ID: mdl-35310505

Leucine aminopeptidase (LAP) is involved in tumor cell proliferation, invasion, and angiogenesis, and is a well-known tumor marker. In recent years, chemiluminescence has been widely used in the field of biological imaging, due to it resulting in a high sensitivity and excellent signal-to-noise ratio. Here, we report the design, synthesis, and evaluation of the first LAP-activated chemiluminescent probe for LAP detection and imaging. The probe initially had no chemiluminescence but produced an extremely strong chemiluminescence after the release of the dioxetane intermediate in the presence of LAP. The probe had high selectivity over other proteases and higher signal-to-noise ratios than commercial fluorophores. Real-time imaging results indicated that the chemiluminescence was remarkably enhanced at the mice tumor site after the probe was injected. Furthermore, the chemiluminescence of this probe in the cancerous tissues of patients was obviously improved compared to that of normal tissues. Taken together, this study has developed the first LAP-activable chemiluminescent probe, which could be potentially used in protein detection, disease diagnosis, and drug development.

7.
Nat Prod Res ; 35(10): 1627-1631, 2021 May.
Article En | MEDLINE | ID: mdl-31232100

From the deep-sea-derived fungus Aspergillus candidus, one novel (1) and three known (2-4) p-terphenyl derivates were isolated. The structure of the new compound was established mainly on the basis of extensive analysis of 1D and 2D NMR data. All four isolates were tested for in vitro anti-food allergic and antitumor bioactivities. Compounds 3 and 4 showed potent antiproliferative effect against four cancer cells of Hela, Eca-109, Bel-7402, and PANC-1 with IC50 values ranging from 5.5 µM to 9.4 µM.


Aspergillus/chemistry , Oceans and Seas , Terphenyl Compounds/pharmacology , Antineoplastic Agents/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Cell Death/drug effects , Cell Line, Tumor , Humans , Proton Magnetic Resonance Spectroscopy , Terphenyl Compounds/chemistry , Terphenyl Compounds/isolation & purification
8.
Org Lett ; 20(3): 660-663, 2018 02 02.
Article En | MEDLINE | ID: mdl-29323495

A one-step methodology for the synthesis of multisubstituted quinoline-4-carboxamides was developed by simply refluxing a mixture of isatins 1 and various kinds of 1,1-enediamines 2-4 in a reaction catalyzed by NH2SO3H. As a result, a series of quinolone-4-carboxamides were produced through a novel cascade reaction mechanism. This reaction involved the formation of the quinoline ring accompanied by the formation of an amide bond in one step. Accordingly, this protocol is suitable for combinatorial and parallel syntheses of quinolone-4-carboxamide drugs or natural products.

...