Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hepatocell Carcinoma ; 11: 15-27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213310

RESUMEN

Background: Protein arginine methyltransferase (PRMT) family members have important roles in cancer processes. However, its functions in the regulation of cancer immunotherapy of hepatocellular carcinoma (HCC) are incompletely understood. This study aimed to investigate the roles of PRMT1 in HCC. Methods: Single-cell RNA sequencing (scRNA-seq) and clinicopathological data were obtained and used to explore the diagnostic and prognostic value, cellular functions and roles in immune microenvironment regulation of PRMT1 in HCC. The functions of PRMT1 were explored using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), as well as gene set enrichment analysis (GSEA). TIMER and CIBERSORT were used to analyze the relationships between PRMT1 expression and immune cell infiltration. The STRING database was used to construct a protein-protein interaction (PPI) network. Results: PRMT1 was aberrantly expressed in HCC, which high expression was associated with tumor progression, worse overall survival (OS) and disease-free survival (DFS) of patients with HCC. PRMT1 was also associated with immune cell infiltration. Moreover, it was specifically expressed in immune cells, including exhausted CD8 T cells, B cells, and mono/macro cells in patients with immunotherapy. The expression of immune checkpoints was significantly increased in the high-PRMT1 expression groups of HCC patients. Regarding biological mechanisms, cell viability, migration and invasion, and the expression of genes related to fatty acid metabolism were suppressed in PRMT1 knockdown HCC cells. Moreover, genes co-expressed with PRMT1 were involved in the fatty acid metabolic process and enriched in fatty and drug-induced liver disease. Conclusion: Taken together, these results indicate that PRMT1 might exert its oncogenic effects via immune microenvironment regulation and fatty acid metabolism in HCC. Our finding will provide a foundation for further studies and indicate a potential clinical therapeutic target for liver cancer.

2.
J Cell Mol Med ; 27(10): 1436-1441, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37073435

RESUMEN

Wolf-Hirschhorn syndrome candidate 1 (WHSC1) is a transcriptional regulatory protein that encodes a histone methyltransferase to control H3K36me2 modification. WHSC1 was upregulated and associated with poor prognosis in HCC. The elevated WHSC1 likely due to the alterations of DNA methylation or RNA modification. WHSC1 perhaps form a chromatin cross talk with H3K27me3 and DNA methylation to regulate transcription factors expression in HCC. Functional analysis indicated that WHSC1 was involved in DNA damage repair, cell cycle, cellular senescence and immune regulations. Furthermore, WHSC1 was associated with the infiltrating levels of B cell, CD4+, Tregs and macrophage cells. Therefore, our findings suggested that WHSC1 might function as a promotor regulator to affect the development and progression of HCC. Thus, WHSC1 could be a potential biomarker in predicting the prognosis and therapeutic target for patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Senescencia Celular/genética , Daño del ADN/genética , Histonas/genética , Histonas/metabolismo , Inmunidad , Neoplasias Hepáticas/genética , Proteínas Represoras/genética , Factores de Transcripción/metabolismo
3.
BMC Gastroenterol ; 23(1): 8, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631750

RESUMEN

The spermatogenesis associated serine rich 2 (SPATS2) is a member of RNA-binding protein in which the abnormal expression is linked with carcinogenesis in serval types of cancer. However, there is no systematic study on the differential expression, prognostic significance, epigenetic regulation, immune infiltration of SPATS2 in hepatocellular carcinoma (HCC). In the present study, we investigated the expression, prognosis, epigenetic regulation, and immune cell infiltration of SPATS2 in HCC. We found that the elevated expression of SPATS2 was unfavorably associated with the clinical pathological stage and prognosis. Functional enrichment analysis revealed that SPATS2 is associated with cell cycle, apoptosis and cancer cell metastasis processes in HCC. Our results confirmed that knockdown of SPATS2 will affect cell cycle, apoptosis and invasion of HCC cell lines. Moreover, the expression of SPATS2 is upregulated by epigenetic regulation, including DNA methylation, m6A and histone modification in HCC. In addition, SPATS2 expression was positively correlated with immune cell infiltration or expression of immune related gene markers in HCC. Taken together, our data demonstrated that SPATS2 is associated with progression and immune infiltration, and could serve as a prognostic biomarker for HCC. In conclusion, these results highlight the potential of SPATS2 to be used as a therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/genética , Epigénesis Genética , Neoplasias Hepáticas/genética , Ciclo Celular , Apoptosis , Pronóstico , Proteínas
4.
PeerJ ; 10: e13201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368338

RESUMEN

S100B has been found to be dysregulated in many cancers including hepatocellular carcinoma (HCC). However, the functions of S100B and its underlying mechanisms in HCC remain poorly understood, especially in the tumor microenvironment. In this study, functions enrichment analysis indicated that S100B expression was correlated with hypoxia and immune responses. We found that hypoxia could induce S100B expression in an HIF-1α-dependent manner in HepG2 cells. Luciferase reporter and ChIP-qRCR assays demonstrated that HIF-1α regulates S100B transcription by directly binding to hypoxia-response elements (HREs) of the S100B promoter. Functionally, knockdown of S100B reduces hypoxia-induced HepG2 cell invasion and migration. Furthermore, GSVA enrichment results displayed that S100B and its co-expressed genes were positively correlated with EMT pathway in HCC. Additionally, GO/KEGG cluster analysis results indicated that co-expressed genes of S100B were involved in biological processes of immune response and multiple tumor immune-related signaling pathways in HCC. S100B expression was positively correlated with multiple immune cells tumor infiltration and associated with chemokines/chemokine receptors and immune checkpoint genes. Moreover, S100B is predominantly expressed in immune cells, especially NK (Natural Killer) cell. In addition, the hub genes of S100B co-expression and hypoxia response in HepG2 cell were also associated with immune cells infiltration in HCC. Taken together, these findings provide a new insight into the complex networks between hypoxia response and immune cells infiltration in tumor microenvironment of liver cancer. S100B maybe serve as a novel target for future HCC therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Hipoxia/genética , Microambiente Tumoral/genética , Subunidad beta de la Proteína de Unión al Calcio S100/genética
5.
Mol Carcinog ; 61(5): 494-507, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35107180

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers. Dysregulation of S100A2 has recently been found in many cancers including HCC. However, its regulatory mechanism in HCC remains poorly understood, especially in hypoxia. In this study, we found that S100A2 is upregulated and correlated with the clinicopathological features of HCC patients. Moreover, the elevated S100A2 showed worse overall survival. Functionally, S100A2 inhibition decreased the proliferation and migration of HepG2 cells. Interestingly, we found that HIF-1α directly binds to hypoxia response elements (HREs) of the S100A2 promoter region. S100A2 expression could be induced in an HIF-1α-dependent manner under hypoxia. Furthermore, S100A2 silencing significantly suppressed HCC cell proliferation and invasion under hypoxia. Mechanistically, pyrosequencing results showed that the hypomethylation status of CpG located in the HRE at the S100A2 promoter was correlated with S100A2 induction. Additionally, HIF-1α- mediated S100A2 activation was associated with TET2-related epigenetic inactivation. TET2 was enriched in the HRE of the S100A2 promoter in HepG2 cells. Finally, S100A2 methylation-related genes and pathways were analyzed. We found that the methylation of S100A2 is correlated with ANXA2, PPP1R15A, and FOS, which include in a hypoxia-related gene set from the GSEA database. Moreover, some EMT-related genes are associated with the methylation of S100A2 in HCC. Conclusively, our study thus uncovered a novel mechanism showing that hypoxia/HIF-1α signaling associated with DNA methylation enhances S100A2 expression in HCC. S100A2 may be useful as a target for facilitating novel diagnostic and therapeutic strategies in liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Hepáticas , Proteínas S100 , Carcinoma Hepatocelular/patología , Hipoxia de la Célula/genética , Línea Celular Tumoral , Factores Quimiotácticos/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/patología , Elementos de Respuesta , Proteínas S100/genética , Proteínas S100/metabolismo , Activación Transcripcional
6.
PLoS One ; 17(1): e0262262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35077478

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with high mortality worldwide. Spermatogenesis-associated serine-rich 2 (SPATS2) could be a novel diagnostic and prognostic biomarker in HCC. However, the regulatory mechanism of SPATS2 in HCC requires further elucidation. Therefore, the study's objective was to investigate this process in HCC. In this study, we found that SPATS2 is significantly upregulated in HepG2 cells to promote cell growth and migration. SPATS2 is the target transcript of lncRNA SNHG5. SPATS2 positively affects the proliferation and migration of HepG2 cells caused by the higher expression of SNHG5. Mechanistically, we identified that the elevated of SPATS2 was attributed to SNHG5 related hypomethylation of SPATS2. SNHG5 reduced the expression of DNMT3a to suppress the methylation level of SPATS2. Taken together, our results uncover a novel epigenetic regulatory mechanism of lncRNA SNHG5-DNMT3a axis-related SPATS2 expression underlying HCC progression. This may serve as a novel prognostic marker and a promising therapeutic target for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , ADN Metiltransferasa 3A/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas/metabolismo , ARN Largo no Codificante/metabolismo , Western Blotting , Carcinoma Hepatocelular/patología , Movimiento Celular , Proliferación Celular , Metilación de ADN , Progresión de la Enfermedad , Epigénesis Genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Reacción en Cadena de la Polimerasa
7.
Zhongguo Dang Dai Er Ke Za Zhi ; 18(6): 551-7, 2016 Jun.
Artículo en Chino | MEDLINE | ID: mdl-27324546

RESUMEN

OBJECTIVE: To investigate the influence of silencing PAX2 gene in vivo on epithelial-mesenchymal transition (EMT) of renal tubular cells in rats with renal interstitial fibrosis. METHODS: A total of 64 Wistar rats were anaesthetized, and unilateral ureteral obstruction (UUO) was performed to establish a rat model of renal interstitial fibrosis. The 64 rats were randomly divided into negative control and PAX2 gene silencing groups (n=32 each). The rats in the control group were transfected with 200 µL NC-siRNA-in vivo jetPEI(TM) solution. Those in the PAX2 gene silencing group were transfected with 200 µL PAX2-siRNA-in vivo jetPEI(TM) solution. Each group was further divided into 4 subgroups based on the post-transfection time (3, 5, 7 and 14 days after transfection), with 8 rats in each subgroup. Renal tissue samples were harvested in each group. Real-time PCR and Western blot were used to measure the mRNA and protein expression of PAX2 in the renal cortex, as well as the mRNA and protein expression of E-cadherin and α-SMA. RESULTS: Compared with the control group, the PAX2 gene silencing group showed significantly lower mRNA and protein expression of PAX2 (P<0.05). In the two groups, the mRNA and protein expression levels of E-cadherin were gradually reduced over the time of obstruction, while those of α-SMA gradually increased. At 14 days after transfection, the PAX2 gene silencing group had significantly higher mRNA and protein expression of E-cadherin but lower mRNA and protein expression of α-SMA compared with the control group (P<0.05). CONCLUSIONS: PAX2 gene silencing can significantly inhibit the process of EMT of renal tubular cells in rats with advanced fibrosis, suggesting that PAX2 gene silencing may have a therapeutic effect on renal interstitial fibrosis.


Asunto(s)
Silenciador del Gen , Riñón/patología , Factor de Transcripción PAX2/genética , Animales , Transición Epitelial-Mesenquimal , Fibrosis , Masculino , ARN Mensajero/análisis , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA