Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(2): 428-445.e20, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38086389

RESUMEN

A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear. We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-ß (Aß) plaque-depositing model. We injected AD-tau brain extract to investigate tau seeding and spreading in the presence or absence of amyloid. Similar to the case report, APOE3ch expression resulted in peripheral dyslipidemia and a marked reduction in plaque-associated tau pathology. Additionally, we observed decreased amyloid response and enhanced microglial response around plaques. We also demonstrate increased myeloid cell phagocytosis and degradation of tau aggregates linked to weaker APOE3ch binding to heparin sulfate proteoglycans. APOE3ch influences the microglial response to Aß plaques, which suppresses Aß-induced tau seeding and spreading. The results reveal new possibilities to target Aß-induced tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteína E3 , Proteínas tau , Animales , Humanos , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Informes de Casos como Asunto
2.
J Clin Invest ; 133(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37279069

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. The APOE-ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset AD. The APOE genotype modulates the effect of sleep disruption on AD risk, suggesting a possible link between apoE and sleep in AD pathogenesis, which is relatively unexplored. We hypothesized that apoE modifies Aß deposition and Aß plaque-associated tau seeding and spreading in the form of neuritic plaque-tau (NP-tau) pathology in response to chronic sleep deprivation (SD) in an apoE isoform-dependent fashion. To test this hypothesis, we used APPPS1 mice expressing human APOE-ε3 or -ε4 with or without AD-tau injection. We found that SD in APPPS1 mice significantly increased Aß deposition and peri-plaque NP-tau pathology in the presence of APOE4 but not APOE3. SD in APPPS1 mice significantly decreased microglial clustering around plaques and aquaporin-4 (AQP4) polarization around blood vessels in the presence of APOE4 but not APOE3. We also found that sleep-deprived APPPS1:E4 mice injected with AD-tau had significantly altered sleep behaviors compared with APPPS1:E3 mice. These findings suggest that the APOE-ε4 genotype is a critical modifier in the development of AD pathology in response to SD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Humanos , Animales , Apolipoproteína E4/genética , Péptidos beta-Amiloides/genética , Apolipoproteínas E , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E3/genética , Placa Amiloide/genética , Placa Amiloide/patología , Sueño/genética
3.
Front Aging Neurosci ; 15: 1119810, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273656

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia. The relationship between AD and sleep dysfunction has received increased attention over the past decade. The use of genetically engineered mouse models with enhanced production of amyloid beta (Aß) or hyperphosphorylated tau has played a critical role in the understanding of the pathophysiology of AD. However, their revelations regarding the progression of sleep impairment in AD have been highly dependent on the mouse model used and the specific techniques employed to examine sleep. Here, we discuss the sleep disturbances and general pathology of 15 mouse models of AD. Sleep disturbances covered in this review include changes to NREM and REM sleep duration, bout lengths, bout counts and power spectra. Our aim is to describe in detail the severity and chronology of sleep disturbances within individual mouse models of AD, as well as reveal broader trends of sleep deterioration that are shared among most models. This review also explores a variety of potential mechanisms relating Aß accumulation and tau neurofibrillary tangles to the progressive deterioration of sleep observed in AD. Lastly, this review offers perspective on how study design might impact our current understanding of sleep disturbances in AD and provides strategies for future research.

4.
Sci Transl Med ; 15(693): eade6285, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37099634

RESUMEN

Sleep loss is associated with cognitive decline in the aging population and is a risk factor for Alzheimer's disease (AD). Considering the crucial role of immunomodulating genes such as that encoding the triggering receptor expressed on myeloid cells type 2 (TREM2) in removing pathogenic amyloid-ß (Aß) plaques and regulating neurodegeneration in the brain, our aim was to investigate whether and how sleep loss influences microglial function in mice. We chronically sleep-deprived wild-type mice and the 5xFAD mouse model of cerebral amyloidosis, expressing either the humanized TREM2 common variant, the loss-of-function R47H AD-associated risk variant, or without TREM2 expression. Sleep deprivation not only enhanced TREM2-dependent Aß plaque deposition compared with 5xFAD mice with normal sleeping patterns but also induced microglial reactivity that was independent of the presence of parenchymal Aß plaques. We investigated lysosomal morphology using transmission electron microscopy and found abnormalities particularly in mice without Aß plaques and also observed lysosomal maturation impairments in a TREM2-dependent manner in both microglia and neurons, suggesting that changes in sleep modified neuro-immune cross-talk. Unbiased transcriptome and proteome profiling provided mechanistic insights into functional pathways triggered by sleep deprivation that were unique to TREM2 and Aß pathology and that converged on metabolic dyshomeostasis. Our findings highlight that sleep deprivation directly affects microglial reactivity, for which TREM2 is required, by altering the metabolic ability to cope with the energy demands of prolonged wakefulness, leading to further Aß deposition, and underlines the importance of sleep modulation as a promising future therapeutic approach.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ratones , Animales , Microglía/metabolismo , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Privación de Sueño/patología , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Placa Amiloide/patología , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
5.
Nature ; 615(7953): 668-677, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890231

RESUMEN

Extracellular deposition of amyloid-ß as neuritic plaques and intracellular accumulation of hyperphosphorylated, aggregated tau as neurofibrillary tangles are two of the characteristic hallmarks of Alzheimer's disease1,2. The regional progression of brain atrophy in Alzheimer's disease highly correlates with tau accumulation but not amyloid deposition3-5, and the mechanisms of tau-mediated neurodegeneration remain elusive. Innate immune responses represent a common pathway for the initiation and progression of some neurodegenerative diseases. So far, little is known about the extent or role of the adaptive immune response and its interaction with the innate immune response in the presence of amyloid-ß or tau pathology6. Here we systematically compared the immunological milieux in the brain of mice with amyloid deposition or tau aggregation and neurodegeneration. We found that mice with tauopathy but not those with amyloid deposition developed a unique innate and adaptive immune response and that depletion of microglia or T cells blocked tau-mediated neurodegeneration. Numbers of T cells, especially those of cytotoxic T cells, were markedly increased in areas with tau pathology in mice with tauopathy and in the Alzheimer's disease brain. T cell numbers correlated with the extent of neuronal loss, and the cells dynamically transformed their cellular characteristics from activated to exhausted states along with unique TCR clonal expansion. Inhibition of interferon-γ and PDCD1 signalling both significantly ameliorated brain atrophy. Our results thus reveal a tauopathy- and neurodegeneration-related immune hub involving activated microglia and T cell responses, which could serve as therapeutic targets for preventing neurodegeneration in Alzheimer's disease and primary tauopathies.


Asunto(s)
Encéfalo , Microglía , Ovillos Neurofibrilares , Linfocitos T , Tauopatías , Animales , Ratones , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Microglía/inmunología , Microglía/metabolismo , Ovillos Neurofibrilares/inmunología , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Proteínas tau/inmunología , Proteínas tau/metabolismo , Tauopatías/inmunología , Tauopatías/metabolismo , Tauopatías/patología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patología , Placa Amiloide/inmunología , Placa Amiloide/metabolismo , Placa Amiloide/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/patología , Células Clonales/inmunología , Células Clonales/metabolismo , Células Clonales/patología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Inmunidad Innata
6.
Acta Neuropathol Commun ; 10(1): 110, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941704

RESUMEN

Corpora amylacea (CA) and their murine analogs, periodic acid Schiff (PAS) granules, are age-related, carbohydrate-rich structures that serve as waste repositories for aggregated proteins, damaged cellular organelles, and other cellular debris. The structure, morphology, and suspected functions of CA in the brain imply disease relevance. Despite this, the link between CA and age-related neurodegenerative diseases, particularly Alzheimer's disease (AD), remains poorly defined. We performed a neuropathological analysis of mouse PAS granules and human CA and correlated these findings with AD progression. Increased PAS granule density was observed in symptomatic tau transgenic mice and APOE knock-in mice. Using a cohort of postmortem AD brain samples, we examined CA in cognitively normal and dementia patients across Braak stages with varying APOE status. We identified a Braak-stage dependent bimodal distribution of CA in the dentate gyrus, with CA accumulating and peaking by Braak stages II-III, then steadily declining with increasing tau burden. Refined analysis revealed an association of CA levels with both cognition and APOE status. Finally, tau was detected in whole CA present in human patient cerebrospinal fluid, highlighting CA-tau as a plausible prodromal AD biomarker. Our study connects hallmarks of the aging brain with the emergence of AD pathology and suggests that CA may act as a compensatory factor that becomes depleted with advancing tau burden.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteínas E/metabolismo , Encéfalo/patología , Cognición , Humanos , Ratones , Proteínas tau/metabolismo
7.
Ann Neurol ; 91(6): 847-852, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35285073

RESUMEN

APOE is the strongest genetic factor for late-onset Alzheimer's disease (AD). A specific conformation of the ApoE protein is present in amyloid-ß (Aß) containing plaques. Immunotherapy targeting ApoE in plaques reduces brain Aß deposits in mice. Here, we evaluated the effects of the anti-human APOE antibody HAE-4 on amyloid plaques, Aß-mediated tau seeding and spreading, and neuritic dystrophy in the 5XFAD amyloid mice expressing human ApoE4. HAE-4 reduced Aß plaques as well as Aß-driven tau seeding/spreading and neuritic dystrophy. These results demonstrate that HAE-4 may provide therapeutic effects on amyloid removal and Aß driven downstream consequences such as tauopathy. ANN NEUROL 2022;91:847-852.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Placa Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Sci Rep ; 10(1): 10944, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616800

RESUMEN

Most published sleep studies use three species: human, house mouse, or Norway rat. The degree to which data from these species captures variability in mammalian sleep remains unclear. To gain insight into mammalian sleep diversity, we examined sleep architecture in the spiny basal murid rodent Acomys cahirinus. First, we used a piezoelectric system validated for Mus musculus to monitor sleep in both species. We also included wild M. musculus to control for alterations generated by laboratory-reared conditions for M. musculus. Using this comparative framework, we found that A. cahirinus, lab M. musculus, and wild M. musculus were primarily nocturnal, but exhibited distinct behavioral patterns. Although the activity of A. cahirinus increased sharply at dark onset, it decreased sharply just two hours later under group and individual housing conditions. To further characterize sleep patterns and sleep-related variables, we set up EEG/EMG and video recordings and found that A. cahirinus sleep significantly more than M. musculus, exhibit nearly three times more REM, and sleep almost exclusively with their eyes open. The observed differences in A. cahirinus sleep architecture raise questions about the evolutionary drivers of sleep behavior.


Asunto(s)
Ritmo Circadiano , Ratones/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Ratones/clasificación
9.
Neuropsychopharmacology ; 45(1): 104-120, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31408876

RESUMEN

As we age, we experience changes in our nighttime sleep and daytime wakefulness. Individuals afflicted with Alzheimer's disease (AD) can develop sleep problems even before memory and other cognitive deficits are reported. As the disease progresses and cognitive changes ensue, sleep disturbances become even more debilitating. Thus, it is imperative to gain a better understanding of the relationship between sleep and AD pathogenesis. We postulate a bidirectional relationship between sleep and the neuropathological hallmarks of AD; in particular, the accumulation of amyloid-ß (Aß) and tau. Our research group has shown that extracellular levels of both Aß and tau fluctuate during the normal sleep-wake cycle. Disturbed sleep and increased wakefulness acutely lead to increased Aß production and decreased Aß clearance, whereas Aß aggregation and deposition is enhanced by chronic increased wakefulness in animal models. Once Aß accumulates, there is evidence in both mice and humans that this results in disturbed sleep. New findings from our group reveal that acute sleep deprivation increases levels of tau in mouse brain interstitial fluid (ISF) and human cerebrospinal fluid (CSF) and chronic sleep deprivation accelerates the spread of tau protein aggregates in neural networks. Finally, recent evidence also suggests that accumulation of tau aggregates in the brain correlates with decreased nonrapid eye movement (NREM) sleep slow wave activity. In this review, we first provide a brief overview of the AD and sleep literature and then highlight recent advances in the understanding of the relationship between sleep and AD pathogenesis. Importantly, the effects of the bidirectional relationship between the sleep-wake cycle and tau have not been previously discussed in other reviews on this topic. Lastly, we provide possible directions for future studies on the role of sleep in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Trastornos del Sueño-Vigilia/metabolismo , Sueño/fisiología , Proteínas tau/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Humanos , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/patología , Proteínas tau/genética
10.
Front Neurosci ; 13: 969, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31619950

RESUMEN

People with diabetes are more likely to experience sleep disturbance than those without. Sleep disturbance can cause daytime sleepiness in diabetic patients, which may impair their daytime performance or even lead to workplace injuries. Therefore, restoring the normal sleep-wake cycle is critical for diabetic patients who experience daytime sleepiness. Previous data on a diabetic mouse model, the db/db mice, have demonstrated that the total sleep time and sleep fragmentation are increased and the daily rhythm of the sleep-wake cycle is attenuated. Accumulating evidence has shown that active time-restricted feeding (ATRF), in which the timing of food availability is restricted to the active-phase, is beneficial to metabolic health. However, it is unknown whether ATRF restores the normal sleep-wake cycle in diabetes. To test that, we used a non-invasive piezoelectric system to monitor the sleep-wake profile in the db/db mice with ad libitum feeding (ALF) as a baseline and then followed with ATRF. The results showed that at baseline, db/db mice exhibited abnormal sleep-wake patterns: the sleep time percent during the light-phase was decreased, while during the dark-phase it was increased with unusual cycling compared to control mice. In addition, the sleep bout length during both the light-phase and the full 24-h period was shortened in db/db mice. Analysis of the sleep-wake circadian rhythm showed that ATRF effectively restored the circadian but suppressed the ultradian oscillations of the sleep-wake cycle in the db/db mice. In conclusion, ATRF may serve as a novel strategy for treating diabetes-induced irregularity of the sleep-wake cycle.

11.
Nat Sci Sleep ; 11: 113-121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31496853

RESUMEN

BACKGROUND: Sleep disturbances are common maladies associated with human age. Sleep duration is decreased, sleep fragmentation is increased, and the timing of sleep onset and sleep offset is earlier. These disturbances have been associated with several neurodegenerative diseases. Mouse models for human sleep disturbances can be powerful due to the accessibility to neuroscientific and genetic approaches, but these are hampered by the fact that most mouse models employed in sleep research have spontaneous mutations in the biosynthetic pathway(s) regulating the rhythmic production of the pineal hormone melatonin, which has been implicated in human sleep. PURPOSE AND METHOD: The present study employed a non-invasive piezoelectric measure of sleep wake cycles in young, middle-aged and old CBA mice, a strain capable of melatonin biosynthesis, to investigate naturally-occurring changes in sleep and circadian parameters as the result of aging. RESULTS: The results indicate that young mice sleep less than do middle-aged or aged mice, especially during the night, while the timing of activity onset and acrophase is delayed in aged mice compared to younger mice. CONCLUSION: These data point to an effect of aging on the quality and timing of sleep in these mice but also that there are fundamental differences between control of sleep in humans and in laboratory mice.

12.
Alzheimers Dement (N Y) ; 5: 70-80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30859123

RESUMEN

INTRODUCTION: Sleep disruption is a characteristic of Alzheimer's disease (AD) that may exacerbate disease progression. This study tested whether a dual orexin receptor antagonist (DORA) would enhance sleep and attenuate neuropathology, neuroinflammation, and cognitive deficits in an AD-relevant mouse model, 5XFAD. METHODS: Wild-type (C57Bl6/SJL) and 5XFAD mice received chronic treatment with vehicle or DORA-22. Piezoelectric recordings monitored sleep and spatial memory was assessed via spontaneous Y-maze alternations. Aß plaques, Aß levels, and neuroinflammatory markers were measured by immunohistochemistry, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction, respectively. RESULTS: In 5XFAD mice, DORA-22 significantly increased light-phase sleep without reducing Aß levels, plaque density, or neuroinflammation. Effects of DORA-22 on cognitive deficits could not be determined because the 5XFAD mice did not exhibit deficits. DISCUSSION: These findings suggest that DORAs may improve sleep in AD patients. Further investigations should optimize the dose and duration of DORA-22 treatment and explore additional AD-relevant animal models and cognitive tests.

13.
Science ; 363(6429): 880-884, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30679382

RESUMEN

The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of ß-amyloid (Aß) that accumulates in Alzheimer's disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aß plaques. However, tau, not Aß, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aß and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading.


Asunto(s)
Encéfalo/metabolismo , Ritmo Circadiano , Líquido Extracelular/química , Privación de Sueño/metabolismo , Sueño/fisiología , Vigilia/fisiología , Proteínas tau/análisis , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Animales , Líquido Extracelular/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Privación de Sueño/líquido cefalorraquídeo , Vigilia/genética , Proteínas tau/metabolismo
14.
BMC Genet ; 19(Suppl 1): 82, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30255767

RESUMEN

BACKGROUND: Longitudinal measurement is commonly employed in health research and provides numerous benefits for understanding disease and trait progression over time. More broadly, it allows for proper treatment of correlated responses within clusters. We evaluated 3 methods for analyzing genome-by-epigenome interactions with longitudinal outcomes from family data. RESULTS: Linear mixed-effect models, generalized estimating equations, and quadratic inference functions were used to test a pharmacoepigenetic effect in 200 simulated posttreatment replicates. Adjustment for baseline outcome provided greater power and more accurate control of Type I error rates than computation of a pre-to-post change score. CONCLUSIONS: Comparison of all modeling approaches indicated a need for bias correction in marginal models and similar power for each method, with quadratic inference functions providing a minor decrement in power compared to generalized estimating equations and linear mixed-effects models.


Asunto(s)
Epigenómica/métodos , Genoma Humano , Islas de CpG , Familia , Humanos , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/genética , Hipoglucemiantes/uso terapéutico , Estudios Longitudinales , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...