Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Anal Chem ; 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38860916

To reduce the risk of atherosclerotic disease, it is necessary to not only diagnose the presence of atherosclerotic plaques but also assess the vulnerability risk of plaques. Accurate detection of the reactive oxygen species (ROS) level at plaque sites represents a reliable way to assess the plaque vulnerability. Herein, through a simple one-pot reaction, two near-infrared (NIR) fluorescent dyes, one is ROS responsive and the other is inert to ROS, are coassembled in an amphiphilic amino acid-assembled nanoparticle. In the prepared NIR fluorescent amino acid nanoparticle (named FANP), the fluorescent properties and ROS-responsive behaviors of the two fluorescent dyes are well maintained. Surface camouflage through red blood cell membrane (RBCM) encapsulation endows the finally obtained FANP@RBCM nanoprobe with not only further reduced cytotoxicity and improved biocompatibility but also increased immune escape capability, prolonged blood circulation time, and thus enhanced accumulation at atherosclerotic plaque sites. In vitro and in vivo experiments demonstrate that FANP@RBCM not only works well in probing the occurrence of atherosclerotic plaques but also enables plaque vulnerability assessment through the accurate detection of the ROS level at plaque sites in a reliable ratiometric mode, thereby holding great promise as a versatile tool for the diagnosis and risk assessment of atherosclerotic disease.

2.
Anal Chem ; 96(16): 6426-6435, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38604773

Sensors designed based on the trans-cleavage activity of CRISPR/Cas12a systems have opened up a new era in the field of biosensing. The current design of CRISPR/Cas12-based sensors in the "on-off-on" mode mainly focuses on programming the activator strand (AS) to indirectly switch the trans-cleavage activity of Cas12a in response to target information. However, this design usually requires the help of additional auxiliary probes to keep the activator strand in an initially "blocked" state. The length design and dosage of the auxiliary probe need to be strictly optimized to ensure the lowest background and the best signal-to-noise ratio. This will inevitably increase the experiment complexity. To solve this problem, we propose using AS after the "RESET" effect to directly regulate the Cas12a enzymatic activity. Initially, the activator strand was rationally designed to be embedded in a hairpin structure to deprive its ability to activate the CRISPR/Cas12a system. When the target is present, target-mediated strand displacement causes the conformation change in the AS, the hairpin structure is opened, and the CRISPR/Cas12a system is reactivated; the switchable structure of AS can be used to regulate the degree of activation of Cas12a according to the target concentration. Due to the advantages of low background and stability, the CRISPR/Cas12a-based strategy can not only image endogenous biomarkers (miR-21) in living cells but also enable long-term and accurate imaging analysis of the process of exogenous virus invasion of cells. Release and replication of virus genome in host cells are indispensable hallmark events of cell infection by virus; sensitive monitoring of them is of great significance to revealing virus infection mechanism and defending against viral diseases.


Biosensing Techniques , CRISPR-Cas Systems , MicroRNAs , CRISPR-Cas Systems/genetics , Biosensing Techniques/methods , Humans , MicroRNAs/analysis , MicroRNAs/metabolism , Allosteric Regulation , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , HEK293 Cells
3.
Anal Chem ; 96(6): 2692-2701, 2024 02 13.
Article En | MEDLINE | ID: mdl-38305871

In recent years, the CRISPR/Cas12a-based sensing strategy has shown significant potential for specific target detection due to its rapid and sensitive characteristics. However, the "always active" biosensors are often insufficient to manipulate nucleic acid sensing with high spatiotemporal control. It remains crucial to develop nucleic acid sensing devices that can be activated at the desired time and space by a remotely applied stimulus. Here, we integrated photoactivation with the CRISPR/Cas12a system for DNA and RNA detection, aiming to provide high spatiotemporal control for nucleic acid sensing. By rationally designing the target recognition sequence, this photoactivation CRISPR/Cas12a system could recognize HPV16 and survivin, respectively. We combined the lateral flow assay strip test with the CRISPR/Cas12a system to realize the visualization of nucleic acid cleavage signals, displaying potential instant test application capabilities. Additionally, we also successfully realized the temporary control of its fluorescent sensing activity for survivin by photoactivation in vivo, allowing rapid detection of target nucleic acids and avoiding the risk of contamination from premature leaks during storage. Our strategy suggests that the CRISPR/Cas12a platform can be triggered by photoactivation to sense various targets, expanding the technical toolbox for precise biological and medical analysis. This study represents a significant advancement in nucleic acid sensing and has potential applications in disease diagnosis and treatment.


Biosensing Techniques , Nucleic Acids , CRISPR-Cas Systems/genetics , Survivin/genetics , Biomarkers , Point-of-Care Testing
4.
ACS Nano ; 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38231016

The spacing between cells has a significant impact on cell-cell interactions, which are critical to the fate and function of both individual cells and multicellular organisms. However, accurately measuring the distance between cell membranes and the variations between different membranes has proven to be a challenging task. In this study, we employ metal-induced energy transfer (MIET) imaging/spectroscopy to determine and track the intermembrane distance and variations with nanometer precision. We have developed a DNA-based molecular adhesive called the DNA nanobrush, which serves as a cellular adhesive for connecting the plasma membranes of different cells. By manipulating the number of base pairs within the DNA nanobrush, we can modify various aspects of membrane-membrane interactions such as adhesive directionality, distance, and forces. We demonstrate that such nanometer-level changes can be detected with MIET imaging/spectroscopy. Moreover, we successfully employed MIET to measure distance variations between a cellular plasma membrane and a model membrane. This experiment not only showcases the effectiveness of MIET as a powerful tool for accurately quantifying membrane-membrane interactions but also validates the potential of DNA nanobrushes as cellular adhesives. This innovative method holds significant implications for advancing the study of multicellular interactions.

5.
Anal Chem ; 95(42): 15725-15735, 2023 10 24.
Article En | MEDLINE | ID: mdl-37819747

The trans-cleavage activity of CRISPR/Cas12a has been widely used in biosensing. However, many CRISPR/Cas12a-based biosensors, especially those that work in "on-off-on" mode, usually suffer from high background and thus impossible intracellular application. Herein, this problem is efficiently overcome by elaborately designing the activator strand (AS) of CRISPR/Cas12a using the "RESET" effect found by our group. The activation ability of the as-designed AS to CRISPR/Cas12a can be easily inhibited, thus assuring a low background for subsequent biosensing applications, which not only benefits the detection sensitivity improvement of CRISPR/Cas12a-based biosensors but also promotes their applications in live cells as well as makes it possible to design high-performance biosensors with greatly improved flexibility, thus achieving the analysis of a wide range of targets. As examples, by using different strategies such as strand displacement, strand cleavage, and aptamer-substrate interaction to reactivate the inhibited enzyme activity, several CRISPR/Cas12a-based biosensing systems are developed for the sensitive and specific detection of different targets, including nucleic acid (miR-21), biological small molecules (ATP), and enzymes (hOGG1), giving the detection limits of 0.96 pM, 8.6 µM, and 8.3 × 10-5 U/mL, respectively. Thanks to the low background, these biosensors are demonstrated to work well for the accurate imaging analysis of different biomolecules in live cells. Moreover, we also demonstrate that these sensing systems can be easily combined with lateral flow assay (LFA), thus holding great potential in point-of-care testing, especially in poorly equipped or nonlaboratory environments.


Biosensing Techniques , Nucleic Acids , CRISPR-Cas Systems/genetics , Biological Assay , Image Processing, Computer-Assisted , Oligonucleotides
6.
Sheng Li Xue Bao ; 75(2): 197-204, 2023 Apr 25.
Article Zh | MEDLINE | ID: mdl-37089094

The purpose of this study was to establish a suitable method for extracting cerebrospinal fluid (CSF) from C57BL/6 mice. A patch clamp electrode puller was used to draw a glass micropipette, and a brain stereotaxic device was used to fix the mouse's head at an angle of 135° from the body. Under a stereoscopic microscope, the skin and muscle tissue on the back of the mouse's head were separated, and the dura mater at the cerebellomedullary cistern was exposed. The glass micropipette (with an angle of 20° to 30° from the dura mater) was used to puncture at a point 1 mm inboard of Y-shaped dorsal vertebral artery for CSF sampling. After the first extraction, the glass micropipette was connected with a 1 mL sterile syringe to form a negative pressure device for the second extraction. The results showed that the successful rate of CSF extraction was 83.33% (30/36). Average CSF extraction amount was (7.16 ± 0.43) µL per mouse. In addition, C57BL/6 mice were given intranasally ferric ammonium citrate (FAC) to establish a model of brain iron accumulation, and the CSF extraction technique established in the present study was used for sampling. The results showed that iron content in the CSF from the normal saline control group was not detected, while the iron content in the CSF from FAC-treated group was (76.24 ± 38.53) µmol/L, and the difference was significant. These results suggest that glass micropipette vacuum technique of CSF sampling established in the present study has the advantages of simplicity, high success rate, large extraction volume, and low bleeding rate, and is suitable for the research on C57BL/6 mouse neurological disease models.


Brain , Cisterna Magna , Mice , Animals , Vacuum , Mice, Inbred C57BL , Cerebrospinal Fluid
7.
J Hazard Mater ; 448: 130821, 2023 04 15.
Article En | MEDLINE | ID: mdl-36709736

Lignin, the most abundant source of renewable aromatic compounds derived from natural lignocellulosic biomass, has great potential for various applications as green materials due to its abundant active groups. However, it is still challenging to quickly construct green polymers with a certain crystallinity by utilizing lignin as a building block. Herein, new green lignin-based covalent organic polymers (LIGOPD-COPs) were one-pot fabricated with water as the reaction solvent and natural lignin as the raw material. Furthermore, by using paraformaldehyde as a protector and modulator, the LIGOPD-COPs prepared under optimized conditions displayed better crystallinity than reported lignin-based polymers, demonstrating the feasibility of preparing lignin-based polymers with improved crystallinity. The improved crystallinity confers LIGOPD-COPs with enhanced application performance, which was demonstrated by their excellent performances in sample treatment of non-targeted food safety analysis. Under optimized conditions, phytochromes, the main interfering matrices, were almost completely removed from different phytochromes-rich vegetables by LIGOPD-COPs, accompanied by "full recovery" of 90 chemical hazards. Green, low-cost, and reusable properties, together with improved crystallinity, will accelerate the industrialization and marketization of lignin-based COPs, and promote their applications in many fields.


Lignin , Polymers , Lignin/chemistry , Polymers/chemistry , Biomass , Water , Solvents
8.
Front Genet ; 13: 1047382, 2022.
Article En | MEDLINE | ID: mdl-36568375

Background: Esophageal Squamous Cell Cancer (ESCC) is an aggressive disease associated with a poor prognosis. As a newly defined form of regulated cell death, ferroptosis plays a crucial role in cancer development and treatment and might be a promising therapeutic target. However, the expression patterns of ferroptosis-related genes (FRGs) in ESCC remain to be systematically analyzed. Methods: First, we retrieved the transcriptional profile of ESCC from TCGA and GEO datasets (GSE47404, GSE23400, and GSE53625) and performed unsupervised clustering to identify different ferroptosis patterns. Then, we used the ssGSEA algorithm to estimate the immune cell infiltration of these patterns and explored the differences in immune cell abundance. Common genes among patterns were finally identified as signature genes of ferroptosis patterns. Results: Herein, we depicted the multi-omics landscape of FRGs through integrated bioinformatics analysis and identified three ESCC subtypes with distinct immune characteristics: clusters A-C. Cluster C was abundant in CD8+ T cells and other immune cell infiltration, while cluster A was immune-barren. By comparing the differently expressed genes between clusters of diverse datasets, we defined a gene signature for each cluster and successfully validated it in the TCGA-ESCC dataset. Conclusion: We provided a comprehensive insight into the expression pattern of ferroptosis genes and their interaction with immune cell infiltration. Additionally, we established a gene signature to define the ferroptosis patterns, which might be used to predict the response to immunotherapy.

9.
Chem Sci ; 13(35): 10395-10405, 2022 Sep 14.
Article En | MEDLINE | ID: mdl-36277631

The separation and detection of circulating tumor cells (CTCs) have a significant impact on clinical diagnosis and treatment by providing a predictive diagnosis of primary tumors and tumor metastasis. But the responsive release and downstream analysis of live CTCs will provide more valuable information about molecular markers and functional properties. To this end, specific capture and controllable release methods, which can achieve the highly efficient enrichment of CTCs with strong viability, are urgently needed. DNA networks create a flexible, semi-wet three-dimensional (3D) microenvironment for cell culture, and have the potential to minimize the loss of cell viability and molecular integrity. More importantly, responsive DNA networks can be reasonably designed as smart sensors and devices to change shape, color, disassemble, and giving back to external stimuli. Here, a strategy for specifically collecting cells using a dual-aptamer DNA network is designed. The proposed strategy enables effective capture, 3D encapsulation, and responsive release of CTCs with strong viability, which can be used for downstream analysis of live cells. The programmability of CRISPR/Cas12a, a powerful toolbox for genome editing, is used to activate the responsive release of captured CTCs from the DNA network. After activation by a specified double-strand DNA (dsDNA) input, CRISPR/Cas12a cleaves the single-stranded DNA regions in the network, resulting in molecular to macroscopic changes in the network. Accompanied by the deconstruction of the DNA network into fragments, controllable cell release is achieved. The viability of released CTCs is well maintained and downstream cell analysis can be performed. This strategy uses the enzymatic properties of CRISPR/Cas12a to design a platform to improve the programmability and versatility of the DNA network, providing a powerful and effective method for capturing and releasing CTCs from complex physiological samples.

10.
Chem Sci ; 13(15): 4364-4371, 2022 Apr 13.
Article En | MEDLINE | ID: mdl-35509467

Besides gene-editing, the CRISPR/Cas12a system has also been widely used in in vitro biosensing, but its applications in live-cell biosensing are rare. One reason is lacking appropriate carriers to synchronously deliver all components of the CRISPR/Cas12a system into living cells. Herein, we demonstrate that MnO2 nanosheets are an excellent carrier of CRISPR/Cas12a due to the two important roles played by them. Through a simple mixing operation, all components of the CRISPR/Cas12a system can be loaded on MnO2 nanosheets and thus synchronously delivered into cells. Intracellular glutathione (GSH)-induced decomposition of MnO2 nanosheets not only results in the rapid release of the CRISPR/Cas12a system in cells but also provides Mn2+ as an accelerator to promote CRISPR/Cas12a-based biosensing of intracellular targets. Due to the merits of highly efficient delivery, rapid intracellular release, and the accelerated signal output reaction, MnO2 nanosheets work better than commercial liposome carriers in live-cell biosensing analysis of survivin messenger RNA (mRNA), producing much brighter fluorescence images in a shorter time. The use of MnO2 nanosheets might provide a good carrier for different CRISPR/Cas systems and achieve the rapid and sensitive live-cell biosensing analysis of different intracellular targets, thus paving a promising way to promote the applications of CRISPR/Cas systems in living cells.

11.
Anal Chem ; 94(22): 8050-8057, 2022 06 07.
Article En | MEDLINE | ID: mdl-35615910

The trans-cleavage activity of CRISPR/Cas12a has been widely used in biosensing applications. However, the lack of exploration on the fundamental properties of CRISPR/Cas12a not only discourages further in-depth studies of the CRISPR/Cas12a system but also limits the design space of CRISPR/Cas12a-based applications. Herein, a "RESET" effect (random extending sequences enhance trans-cleavage activity) is discovered for the activation of CRISPR/Cas12a trans-cleavage activity. That is, a single-stranded DNA, which is too short to work as the activator, can efficiently activate CRISPR/Cas12a after being extended a random sequence from its 3'-end, even when the random sequence folds into secondary structures. The finding of the "RESET" effect enriches the CRISPR/Cas12a-based sensing strategies. Based on this effect, two CRISPR/Cas12a-based biosensors are designed for the sensitive and specific detection of two biologically important enzymes.


Biosensing Techniques , CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , DNA, Single-Stranded/genetics
12.
Chem Asian J ; 17(5): e202101315, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-34989140

Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally-defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher-order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided.


Biosensing Techniques , Nanostructures , Base Pairing , DNA/chemistry , Nanostructures/chemistry , Nanotechnology
13.
Talanta ; 236: 122846, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-34635236

Simultaneous detection of multiple microRNAs (miRNAs) with high sensitivity can give accurate and reliable information for clinical applications. By uniformly anchoring hairpin probes on the surface of DNA nanolantern, a three-dimensional DNA nanostructure contains abundant and adjustable modification sites, highly integrated DNA nanoprobes were designed and developed as catalytic hairpin assembly (CHA)-based signal amplifiers for enzyme-free signal amplification detection of target miRNAs. The nanolantern-based CHA (NLC) amplifiers, which were facilely prepared via a simple "one-pot" annealing method, showed enhanced biostability, improved cell internalization efficiency, accelerated CHA reaction kinetics, and increased signal amplification capability compared to the single-stranded DNA hairpin probes used in traditional CHA reaction. By co-assembling multiple hairpin probes on a DNA nanolantern surface, as-prepared NLC amplifiers were demonstrated to work well for highly sensitive and specific imaging, expression level fluctuation analysis of two miRNAs in living cells, and miRNAs-guided tumor imaging in living mice. The proposed DNA nanolantern-based nanoamplifier strategy might provide a feasible way to promote the cellular and in vivo applications of nucleic acid probes.


Biosensing Techniques , MicroRNAs , Animals , Catalysis , DNA/genetics , Mice , MicroRNAs/genetics , Nucleic Acid Probes
14.
Anal Chem ; 93(48): 16231-16239, 2021 12 07.
Article En | MEDLINE | ID: mdl-34818886

Methods to detect and quantify disease biomarkers with high specificity and sensitivity in biological fluids play a key role in enabling clinical diagnosis, including point-of-care testing. Myeloperoxidase (MPO) is an emerging biomarker for the detection of inflammation, neurodegenerative diseases, and cardiovascular disease, where excess MPO can lead to oxidative damage to biomolecules in homeostatic systems. While numerous methods have been developed for MPO analysis, most techniques are challenging in clinical applications due to the lack of amplification methods, high cost, or other practical drawbacks. Enzyme-linked immunosorbent assays are currently used for the quantification of MPO in clinical practice, which is often limited by the availability of antibodies with high affinity and specificity and the significant nonspecific binding of antibodies to the analytical surface. In contrast, nucleic acid-based biosensors are of interest because of their simplicity, fast response time, low cost, high sensitivity, and low background signal, but detection targets are limited to nucleic acids and non-nucleic acid biomarkers are rare. Recent studies reveal that the modification of a genome in the form of phosphorothioate is specifically sensitive to the oxidative effects of the MPO/H2O2/Cl- system. We developed an oxidative cleavage-based three-dimensional DNA biosensor for rapid, ratiometric detection of HOCl and MPO in a "one-pot" method, which is simple, stable, sensitive, specific, and time-saving and does not require a complex reaction process, such as PCR and enzyme involvement. The constructed biosensor has also been successfully used for MPO detection in complex samples. This strategy is therefore of great value in disease diagnosis and biomedical research.


Biosensing Techniques , Hypochlorous Acid , DNA , Hydrogen Peroxide , Oxidative Stress , Peroxidase/metabolism
15.
Anal Chim Acta ; 1185: 338882, 2021 Nov 15.
Article En | MEDLINE | ID: mdl-34711321

CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) proteins are powerful gene-editing tools because of their ability to accurately recognize and manipulate nucleic acids. Besides gene-editing function, they also show great promise in biosensing applications due to the superiority of easy design and precise targeting. To improve the performance of CRISPR/Cas-based biosensing systems, various nucleic acid-based signal amplification techniques are elaborately incorporated. The incorporation of these amplification techniques not only greatly increases the detection sensitivity and specificity, but also extends the detectable target range, as well as makes the use of various signal output modes possible. Therefore, summarizing the use of signal amplification techniques in sensing systems and elucidating their roles in improving sensing performance are very necessary for the development of more superior CRISPR/Cas-based biosensors for various applications. In this review, CRISPR/Cas-based biosensors are summarized from two aspects: the incorporation of signal amplification techniques in three kinds of CRISPR/Cas-based biosensing systems (Cas9, Cas12 and Cas13-based ones) and the signal output modes used by these biosensors. The challenges and prospects for the future development of CRISPR/Cas-based biosensors are also discussed.


Biosensing Techniques , Nucleic Acids , CRISPR-Cas Systems/genetics , Gene Editing , Sensitivity and Specificity
16.
Chem Sci ; 12(22): 7602-7622, 2021 May 11.
Article En | MEDLINE | ID: mdl-34168817

In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.

17.
Chem Commun (Camb) ; 57(55): 6760-6763, 2021 Jul 08.
Article En | MEDLINE | ID: mdl-34132275

The precise control over high-order DNA architecture assembly might be challenging due to complicated circuit design and functional unit synthesis. Here, we show an enzyme-free, catalytic assembly to construct nanometer and micrometer architectures in a bottom-up manner and applied them in nanoparticles and cell assembly.


DNA/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Catalysis , Cell Survival
18.
Analyst ; 146(8): 2600-2608, 2021 Apr 26.
Article En | MEDLINE | ID: mdl-33721010

Accurate and specific analysis of adenosine triphosphate (ATP) expression levels in living cells can provide valuable information for understanding cell metabolism, physiological activities and pathologic mechanisms. Herein, DNA nanolantern-based split aptamer nanoprobes are prepared and demonstrated to work well for in situ analysis of ATP expression in living cells. The nanoprobes, which carry multiple split aptamer units on the surface, are easily and inexpensively prepared by a "one-pot" assembly reaction of four short oligonucleotide strands. A series of characterization experiments verify that the nanoprobes have good monodispersity, strong biostability, high cell internalization efficiency, and fluorescence resonance energy transfer (FRET)-based ratiometric response to ATP in the concentration range covering the entire intracellular ATP expression level. By changing the intracellular ATP level via different treatments, the nanoprobes are demonstrated to show excellent performance in intracellular ATP expression analysis, giving a highly ATP concentration-dependent ratiometric fluorescence signal output. ATP-induced formation of large-sized DNA aggregates not only amplifies the FRET signal output, but also makes in situ ATP-imaging analysis in living cells possible. In situ responsive crosslinking of nanoprobes also makes them capable of lighting up the mitochondria of living cells. By simply changing the split aptamer sequence, the proposed DNA nanolantern-based split aptamer strategy might be easily extended to other targets.


Aptamers, Nucleotide , Biosensing Techniques , Adenosine Triphosphate , DNA , DNA Probes , Mitochondria
19.
Biosens Bioelectron ; 171: 112734, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33069955

A simple and highly sensitive biosensing strategy was reported by cascading terminal deoxynucleotidyl transferase (TdT)-catalyzed substrate extension and CRISPR-Cas12a -catalyzed short-stranded DNA probe cleavage. Such a strategy, which is named as TdT-combined CRISPR-Cas12a amplification, gives excellent signal amplification capability due to the synergy of two amplification steps, and thus shows great promise in the design of various biosensors. Based on this strategy, two representative biosensors were developed by simply adjusting the DNA substrate design. High signal amplification efficiency and nearly zero background endowed the biosensors with extraordinary high sensitivity. By utilizing these two biosensors, ultrasensitive detection of uracil-DNA glycosylase (UDG) and T4 polynucleotide kinase (T4 PNK) was achieved with the detection limit as low as 5 × 10-6 U/mL and 1 × 10-4 U/mL, respectively. The proposed UDG-sensing platform was also demonstrated to work well for the UDG activity detection in cancer cells as well as UDG screening and inhibitory capability evaluation, thus showing a great potential in clinical diagnosis and biomedical research.


Biosensing Techniques , Uracil-DNA Glycosidase , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Nucleotidylexotransferase , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism
20.
Biosens Bioelectron ; 168: 112556, 2020 Nov 15.
Article En | MEDLINE | ID: mdl-32890931

We reported a CRISPR/Cas-based dual amplified sensing strategy for rapid, sensitive and selective detection of polynucleotide kinase/phosphatase (PNKP), a DNA damage repair-related biological enzyme. In this strategy, a PNKP-triggered nicking enzyme-mediated strand displacement amplification reaction was introduced to enrich the activator DNA strands for CRISPR/Cas. Such an isothermal DNA amplification step, together with subsequent activated CRISPR/Cas-catalyzed cleavage of fluorescent-labeled short-stranded DNA probes, enable synergetic signal amplification for sensitive PNKP detection. The proposed strategy showed a wide linear detection range (more than 3 orders of magnitude ranging from 1× 10-5 to 2.5 × 10-2 U/mL T4 PNKP) and a detection limit as low as 3.3 × 10-6 U/mL. It was successfully used for the PNKP activity detection in cell extracts with high fidelity and displayed great potential for enzyme inhibitor screening and inhibitory capability evaluation. This work broadens the applications of CRISPR/Cas12a-based sensors to biological enzymes and provides a way to improve the sensitivity by introducing an isothermal signal amplification step. Such an isothermal DNA amplification-CRISPR/Cas-combined biosensor design concept might expand CRISPR/Cas-based sensing systems and promote their applications in various fields such as disease diagnosis and drug screening.


Biosensing Techniques , Polynucleotide 5'-Hydroxyl-Kinase , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Phosphoric Monoester Hydrolases , Polynucleotide 5'-Hydroxyl-Kinase/genetics
...