Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 750-757, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121659

RESUMEN

Two-dimensional (2D) Pd-based nanostructures with a high active surface area and a large number of active sites are commonly used in alcohol oxidation research, whereas the less explored ring structure made of nanosheets with large pores is of interest. In this study, we detail the fabrication of PdCu nanorings (NRs) featuring hollow interiors and low coordinated sites using a straightforward solvothermal approach. Due to increased exposure of active sites and the synergistic effects of bimetallics, the PdCu NRs exhibited superior catalytic performance in both the ethanol oxidation reaction (EOR) and the ethylene glycol oxidation reaction (EGOR). The mass activities of PdCu NRs for EOR and EGOR were measured at 7.05 A/mg and 8.12 A/mg, respectively, surpassing those of commercial Pd/C. Furthermore, the PdCu NRs demonstrated enhanced catalytic stability, maintaining higher mass activity levels compared to other catalysts during stability testing. This research offers valuable insights for the development of efficient catalysts for alcohol oxidation.

2.
J Colloid Interface Sci ; 650(Pt A): 350-357, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37413869

RESUMEN

Bimetallic two-dimensional (2D) nanomaterials are widely used in electrocatalysis owing to their unique physicochemical properties, while trimetallic 2D materials of porous structures with large surface area are rarely reported. In this paper, a one-pot hydrothermal synthesis of ternary ultra-thin PdPtNi nanosheets is developed. By adjusting the volume ratio of the mixed solvents, PdPtNi with porous nanosheets (PNSs) and ultrathin nanosheets (UNSs) was prepared. The growth mechanism of PNSs was investigated through a series of control experiments. Notably, thanks to the high atom utilization efficiency and fast electron transfer, the PdPtNi PNSs have remarkable activity of methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The mass activities of the well-tuned PdPtNi PNSs for MOR and EOR were 6.21 A mg-1 and 5.12 A mg-1, respectively, much higher than those of commercial Pt/C and Pd/C. In addition, after durability test, the PdPtNi PNSs exhibited desirable stability with the highest retained current density. Therefore, this work provides a significant guidance for designing and synthesizing a new 2D material with excellent catalytic performance toward direct fuel cells applications.

3.
J Colloid Interface Sci ; 636: 602-609, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36669453

RESUMEN

Porous nanospheres (PNSs) have great development prospects in the electrocatalysis field because of their structural characteristics, such as a large specific surface area. However, it is still a challenge to find a simple and energy-saving method for the controllable synthesis of PNS nanocatalysts. In this paper, a one-pot CTAC-assisted strategy was developed for the successful formation of PdPtAg PNSs with high porosity at room temperature. Benefitting from the unique structures, optimized composition, acceleration of charge transfer and enhanced resistance to CO poisoning, the PdPtAg PNSs displayed considerably improved electrocatalytic performance with high mass activity and stability toward the ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR). The EGOR and GOR mass activities of PdPtAg were 5.00 A mgmetal-1 and 3.06 A mgmetal-1, which are 6.22 and 1.91 times that of commercial Pd/C, respectively. This work is expected to offer a new path for improving catalytic performance by simple design and adjustment of morphology.

4.
Angew Chem Int Ed Engl ; 61(41): e202210174, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35981223

RESUMEN

The presence of apoptosis inhibition proteins renders the cancer cells resistant to apoptosis, severely compromising the antitumor efficacy of sonodynamic therapy (SDT). Here, an intelligent anticancer nanoplatform based on an Aza-boron-dipyrromethene dye (denoted as Aza-BDY) is elaborately established for ferroptosis augmented SDT through cysteine (Cys) starvation. After endocytosis by tumor cells, Aza-BDY serves as both a ferroptosis inducing agent and a sonosensitizer for tumor treatment. The specific Cys response facilitates the disruption of redox homeostasis and initiation of cellular ferroptosis. Meanwhile, the released sonosensitizer causes efficient SDT and augments ferroptosis under ultrasound irradiation. Detailed in vitro and in vivo investigations demonstrate that the synergistic effect of Cys depletion and singlet oxygen (1 O2 ) generation significantly induces cancer-cell death and suppresses tumor proliferation with a high inhibition rate of 97.5 %.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Boro , Línea Celular Tumoral , Cisteína , Humanos , Nanopartículas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Porfobilinógeno/análogos & derivados , Especies Reactivas de Oxígeno/metabolismo , Oxígeno Singlete/metabolismo
5.
J Fungi (Basel) ; 7(12)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34947045

RESUMEN

Two new corticioid fungal species, Phanerochaete pruinosa and P. rhizomorpha spp. nov. are proposed based on a combination of morphological features and molecular evidence. Phanerochaete pruinosa is characterized by the resupinate basidiomata with the pruinose hymenial surface, a monomitic hyphal system with simple-septate generative hyphae and subcylindrical basidiospores measuring as 3.5-6.7 × 1.5-2.7 µm. Phanerochaete rhizomorpha is characterized by having a smooth hymenophore covered by orange hymenial surface, the presence of rhizomorphs, subulate cystidia, and narrower ellipsoid to ellipsoid basidiospores. Sequences of ITS+nLSU nrRNA gene regions of the studied specimens were generated and phylogenetic analyses were performed with maximum likelihood, maximum parsimony, and Bayesian inference methods. These phylogenetic analyses showed that two new species clustered into genus Phanerochaete, in which P. pruinosa was sister to P. yunnanensis with high supports (100% BS, 100% BT, 1.00 BPP); morphologically differing by a pale orange to greyish orange and densely cracked hymenial surface. Another species P. rhizomorpha was closely grouped with P. citrinosanguinea with lower supports; morphologically having yellow to reddish yellow hymenial surface, and smaller cystidia measuring as 31-48 × 2.3-4.8 µm.

6.
Biomaterials ; 277: 121071, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450576

RESUMEN

Catalytic cascade transformations, which occur in spatially constrained tumor environment to generate therapeutic moieties from prodrugs or intrinsic species, are highly desirable for precise cancer therapy. Nevertheless, it is high challenging to engineer a cascade nanoreactor with tumor microenvironment (TME)-responsive capability for synergistic tumor therapy. Inspired by the biocatalytic cascades in biological processes, here, a tumor-specific nanoreactor was established to activate cascade reactions for oxidative stress-augmented chemotherapy by the integration of an artificial enzyme, Pt(IV)-based prodrug (Pt(IV)), with Cu(II)-based metal-organic frameworks (CuMOF). Upon internalization of CuMOF@Pt(IV) by tumor cells, in addition to chemotherapeutic effect, the activated cisplatin by glutathione (GSH) reduction is capable of acting as an artificial enzyme to elevate the hydrogen peroxide (H2O2) level through cascade reactions for augmenting the therapeutic efficacy of Cu+-mediated chemodynamic therapy (CDT). Meanwhile, CuMOF@Pt(IV) specifically deplete overexpressed GSH at tumor sites, thus amplifying tumor oxidative stress, and finally leading to augmented antitumor efficacy. The orchestrated cooperative effect of chemotherapy and oxidative stress presents splendid therapeutic efficacy on tumor-bearing mice with negligible adverse effects. Therefore, this cascade nanoreactor provides exciting opportunities to develop complementary therapeutic modalities for precise cancer treatment.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Profármacos , Animales , Línea Celular Tumoral , Peróxido de Hidrógeno , Ratones , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Microambiente Tumoral
7.
J Fungi (Basel) ; 8(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35049975

RESUMEN

Three wood-inhabiting fungal species, Xylodon laceratus, X. montanus, and X. tropicus spp. nov., were collected from southern China, here proposed as new taxa based on a combination of morphological features and molecular evidence. Xylodon laceratus is characterized by the resupinate basidiomata with grandinioid hymenophore having cracked hymenial surface, and ellipsoid basidiospores; X. montanus is characterized by the annual basidiomata having the hard, brittle hymenophore with cream hymenial surface, and ellipsoid to broadly ellipsoid basidiospores (3.9-5.3 × 3.2-4.3 µm); and X. tropicus is characterized by its grandinioid hymenophore with buff to a pale brown hymenial surface and subglobose basidiospores measuring 2-4.8 × 1.6-4 µm. Sequences of ITS and nLSU rRNA markers of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony, and Bayesian inference methods. The ITS+nLSU analysis of the order Hymenochaetales indicated that the three new species clustered into the family Schizoporaceae, located in genus Xylodon; based on further analysis of ITS dataset, X. laceratus was a sister to X. heterocystidiatus; X. montanus closely grouped with X. subclavatus and X. xinpingensis with high support; while X.tropicus was retrieved as a sister to X. hastifer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA