Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Front Cell Dev Biol ; 12: 1210944, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994453

RESUMEN

Tumor necrosis factor-α (TNFα) is a master cytokine which induces expression of chemokines and adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in endothelial cells to initiate the vascular inflammatory response. In this study, we identified neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, as a modulator of TNFα-induced inflammatory response of endothelial cells. NRP1 shRNA expression suppressed TNFα-stimulated leukocyte adhesion and expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVECs). Likewise, it reduced TNFα-induced phosphorylation of MAPK p38 but did not significantly affect other TNF-induced signaling pathways, such as the classical NFκB and the AKT pathway. Immunofluorescent staining demonstrated co-localization of NRP1 with the two receptors of TNF, TNFR1 and TNFR2. Co-immunoprecipitation further confirmed that NRP1 was in the same protein complex or membrane compartment as TNFR1 and TNFR2, respectively. Modulation of NRP1 expression, however, neither affected TNFR levels in the cell membrane nor the receptor binding affinities of TNFα. Although a direct interface between NRP1 and TNFα/TNFR1 appeared possible from a protein docking model, a direct interaction was not supported by binding assays in cell-free microplates and cultured cells. Furthermore, TNFα was shown to downregulate NRP1 in a time-dependent manner through TNFR1-NFκB pathway in HUVECs. Taken together, our study reveals a novel reciprocal crosstalk between NRP1 and TNFα in vascular endothelial cells.

2.
J Exp Clin Cancer Res ; 43(1): 159, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38840237

RESUMEN

BACKGROUND: Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. EXPERIMENTAL DESIGN: We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. RESULTS: EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. CONCLUSION: Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.


Asunto(s)
Carcinoma de Células Renales , Reparación del ADN , Neoplasias Renales , Survivin , Serina-Treonina Quinasas TOR , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/radioterapia , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Animales , Survivin/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Renales/patología , Neoplasias Renales/radioterapia , Neoplasias Renales/tratamiento farmacológico , Reparación del ADN/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Mitosis/efectos de los fármacos , Mitosis/efectos de la radiación , Imidazoles/farmacología , Daño del ADN , Everolimus/farmacología , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Liposomas/farmacología , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico
3.
Fortune J Health Sci ; 7(1): 112-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706513

RESUMEN

Surface chemistry of nanoparticles play significant role in their cellular interaction. Along with other group, we previously demonstrated that dynamic alteration of cell membrane during uptake of gold nanoparticles can be thoroughly probed by nanomechanical properties of cell membrane. Additionally, endocytosis influences intracellular cytokines expression that also impact membrane stiffness. Hence, we have hypothesized that surface chemistry of gold nanoparticles influences intracellular cytokines which in turn imparts dynamic alteration of nanomechanical properties of cellular membrane of pancreatic cancer cells. Various gold nanoparticles decorated with targeting peptide, polyethylene glycol or their combinations have been used to treat two pancreatic cancer cell lines, Panc-1 and AsPC1, for 1 and 24 hours. Atomic force microscope is used to measure linear and nonlinear nanomechanical properties of cell membrane. Intracellular cytokine has been measured using real time polymeric chain reaction. We evaluated several criteria such as receptor dependent vs independent, PEGylated vs non-PEGylated and different timepoints, to deduce correlations between cytokines and nanomechanical attributes. We have identified unique relationship pro-tumorigenic cytokines with both linear and non-linear nanomechanical properties of Panc-1 and AsPC1 cell membrane during uptake of pristine gold nanoparticles or for PEGylation and for targeting peptide conjugation at the nanoparticle surface.

4.
Sleep Med ; 119: 518-525, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805859

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA) is increasingly recognized as a common condition in the general population and causes significant OSA-associated morbidities including cardiovascular and cerebrovascular events such as cerebral small vessel disease (CSVD) and stroke. METHODS: In this study, using sensitive ELISA immunoassays, we measured subset of endothelial/vascular and inflammatory biomarkers as well as neurofilament light chain (NfL), a sensitive marker for neuroaxonal injury, using plasma from OSA patients post-stroke (Acute Cerebral Infarction (ACI), N = 26) to determine their usefulness as potential prognostic markers in disease progression. RESULTS: Our results showed significantly increased plasma TNFα and NfL concentrations and decreased concentrations of platelet derived growth factor (PDGF-AA) in post-stroke OSA patients with more severe white matter hyperintensities (WMHs). And after separating the patients based on sex, compared to females, male post-stroke OSA patients with severe WMHs have increased circulating levels of inflammatory chemokine CXCL10 and cytokine Interleukin-10 (IL-10) and significantly decreased levels of Angiopoietin-1 (Ang-1) an important protein responsible for endothelial/vascular integrity functions. Importantly, in a subset of newly diagnosed OSA patients (without prior history of stroke), significantly increased plasma CXCL10 levels and decreased plasma Ang-1 levels were also readily observed when compared to healthy controls, indicating possible altered endothelial integrity and ongoing vascular inflammation in these newly diagnosed OSA patients. CONCLUSIONS: In summary, our study has identified a novel set of plasma biomarkers including PDGF-AA, CXCL10 and Ang-1 for their potential prognostic value for disease outcomes pre- and post-stroke in OSA patients and use as surrogate markers to measure efficacy of treatment modalities.


Asunto(s)
Biomarcadores , Apnea Obstructiva del Sueño , Accidente Cerebrovascular , Humanos , Apnea Obstructiva del Sueño/sangre , Apnea Obstructiva del Sueño/complicaciones , Masculino , Biomarcadores/sangre , Femenino , Persona de Mediana Edad , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/etiología , Anciano , Factor de Crecimiento Derivado de Plaquetas/análisis , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas de Neurofilamentos/sangre , Factor de Necrosis Tumoral alfa/sangre , Quimiocina CXCL10/sangre , Angiopoyetina 1/sangre , Inflamación/sangre , Interleucina-10/sangre
5.
Arterioscler Thromb Vasc Biol ; 43(10): 1921-1934, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37650323

RESUMEN

BACKGROUND: CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) technology-mediated genome editing has significantly improved the targeted inactivation of genes in vitro and in vivo in many organisms. Neuropilins play crucial roles in zebrafish heart regeneration, heart failure in mice, and electrical remodeling after myocardial infarction in rats. But the cell-specific functions of nrp1 have not been described before. In this study, we have investigated the role of nrp1 isoforms, including nrp1a and nrp1b, in cardiomyocytes during cardiac injury and regeneration in adult zebrafish hearts. METHODS: In this study, we have reported a novel CRISPR-based vector system for conditional tissue-specific gene ablation in zebrafish. Specifically, the cardiac-specific cmlc2 promoter drives Cas9 expression to silence the nrp1 gene in cardiomyocytes in a heat-shock inducible manner. This vector system establishes a unique tool to regulate the gene knockout in both the developmental and adult stages and hence widens the possibility of loss-of-function studies in zebrafish at different stages of development and adulthood. Using this approach, we investigated the role of neuropilin isoforms nrp1a and nrp1b in response to cardiac injury and regeneration in adult zebrafish hearts. RESULTS: We observed that both the isoforms (nrp1a and nrp1b) are upregulated after the cryoinjury. Interestingly, the nrp1b knockout significantly delayed heart regeneration and impaired cardiac function in the adult zebrafish after cryoinjury, demonstrated by reduced heart rate, ejection fractions, and fractional shortening. In addition, we show that the knockdown of nrp1b but not nrp1a induces activation of the cardiac remodeling genes in response to cryoinjury. CONCLUSIONS: To our knowledge, this study is novel where we have reported a heat-shock-mediated conditional knockdown of nrp1a and nrp1b isoforms using CRISPR/Cas9 technology in the cardiomyocyte in zebrafish and furthermore have identified a crucial role for the nrp1b isoform in zebrafish cardiac remodeling and eventually heart function in response to injury.


Asunto(s)
Sistemas CRISPR-Cas , Miocitos Cardíacos , Regeneración , Proteínas de Pez Cebra , Pez Cebra , Animales , Edición Génica , Miocitos Cardíacos/fisiología , Neuropilina-1/genética , Remodelación Ventricular , Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
6.
Res Sq ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38196607

RESUMEN

Background: Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. Experimental Design: We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. Results: EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. Conclusion: Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.

7.
Front Cell Dev Biol ; 10: 903047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846360

RESUMEN

Hypoxia-induced endothelial cell (EC) dysfunction has been implicated as potential initiators of different pathogenesis, including Alzheimer's disease and vascular dementia. However, in-depth structural, mechanical, and molecular mechanisms leading to EC dysfunction and pathology need to be revealed. Here, we show that ECs exposed to hypoxic conditions readily enter a senescence phenotype. As expected, hypoxia upregulated the expression of vascular endothelial growth factor (VEGFs) and its receptors (VEGFRs) in the ECs. Interestingly, Knockdown of VEGFR-1 expression prior to hypoxia exposure prevented EC senescence, suggesting an important role of VEGFR-1 expression in the induction of EC senescence. Using atomic force microscopy, we showed that senescent ECs had a flattened cell morphology, decreased membrane ruffling, and increased membrane stiffness, demonstrating unique morphological and nanomechanical signatures. Furthermore, we show that hypoxia inhibited the Hippo pathway Yes-associated protein (YAP-1) expression and knockdown of YAP-1 induced senescence in the ECs, supporting a key role of YAP-1 expression in the induction of EC senescence. And importantly, VEGFR-1 Knockdown in the ECs modulated YAP-1 expression, suggesting a novel VEGFR-1-YAP-1 axis in the induction of hypoxia-mediated EC senescence. In conclusion, VEGFR-1 is overexpressed in ECs undergoing hypoxia-mediated senescence, and the knockdown of VEGFR-1 restores cellular structural and nanomechanical integrity by recovering YAP-1 expression.

8.
iScience ; 24(10): 103189, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34703990

RESUMEN

Vascular endothelial cell growth factor (VEGF) is a key regulator of vascular permeability. Herein we aim to understand how acute and chronic exposures of VEGF induce different levels of vascular permeability. We demonstrate that chronic VEGF exposure leads to decreased phosphorylation of VEGFR2 and c-Src as well as steady increases of nitric oxide (NO) as compared to that of acute exposure. Utilizing heat-inducible VEGF transgenic zebrafish (Danio rerio) and establishing an algorithm incorporating segmentation techniques for quantification, we monitored acute and chronic VEGF-induced vascular hyperpermeability in real time. Importantly, dimethylarginine dimethylaminohydrolase-1 (DDAH1), an enzyme essential for NO generation, was shown to play essential roles in both acute and chronic vascular permeability in cultured human cells, zebrafish model, and Miles assay. Taken together, our data reveal acute and chronic VEGF exposures induce divergent signaling pathways and identify DDAH1 as a critical player and potentially a therapeutic target of vascular hyperpermeability-mediated pathogenesis.

9.
J Inflamm Res ; 14: 4551-4565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526801

RESUMEN

OBJECTIVE: Endothelial cell (EC) activation facilitates leukocyte adhesion to vascular walls, which is implicated in a variety of cardiovascular diseases and is a target for prevention and treatment. Despite the development of anti-inflammatory medications, cost-effective therapies with significant anti-inflammatory effects and lower organ toxicity remain elusive. The goal of this study is to identify novel synthetic compounds that inhibit EC inflammatory response with minimal organ toxicity. METHODS AND RESULTS: In this study, we discovered LCC-09, a salicylanilide derivative consisting of the functional fragment of magnolol, 2,4-difluorophenyl, and paeonol moiety of salicylate, as a novel anti-inflammatory compound in cultured ECs and zebrafish model. LCC-09 was shown to inhibit pro-inflammatory cytokine tumor necrosis factor-α (TNFα)-induced expression of adhesion molecules and inflammatory cytokines, leading to reduced leukocyte adhesion to ECs. Mechanistically, LCC-09 inhibits the phosphorylation of signal transducer and activator of transcription 1 (STAT1), TNFα-induced degradation of NF-κ-B Inhibitor-α (IκBα) and phosphorylation of NFκB p65, resulting in reduced NFκB transactivation activity and binding to E-selectin promoter. Additionally, LCC-09 attenuated TNFα-induced generation of reactive oxygen species in ECs. Molecular docking models suggest the binding of LCC-09 to NFκB essential modulator (NEMO) and Janus tyrosine kinase (JAK) may lead to dual inhibition of NFκB and STAT1. Furthermore, the anti-inflammatory effect of LCC-09 was validated in the lipopolysaccharides (LPS)-induced inflammation model in zebrafish. Our results demonstrated that LCC-09 significantly reduced the LPS-induced leukocyte recruitment and mortality of zebrafish embryos. Finally, LCC-09 was administered to cultured ECs and zebrafish embryos and showed minimal toxicities. CONCLUSION: Our results support that LCC-09 inhibits EC inflammatory response but does not elicit significant toxicity.

10.
Cancers (Basel) ; 13(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34439202

RESUMEN

PLEXIND1 is upregulated in several cancers, including pancreatic ductal adenocarcinoma (PDAC). It is an established mediator of semaphorin signaling, and neuropilins are its known coreceptors. Herein, we report data to support the proposal that PLEXIND1 acts as a transforming growth factor beta (TGFß) coreceptor, modulating cell growth through SMAD3 signaling. Our findings demonstrate that PLEXIND1 plays a pro-tumorigenic role in PDAC cells with oncogenic KRAS (KRASmut). We show in KRASmut PDAC cell lines (PANC-1, AsPC-1,4535) PLEXIND1 downregulation results in decreased cell viability (in vitro) and reduced tumor growth (in vivo). Conversely, PLEXIND1 acts as a tumor suppressor in the PDAC cell line (BxPC-3) with wild-type KRAS (KRASwt), as its reduced expression results in higher cell viability (in-vitro) and tumor growth (in vivo). Additionally, we demonstrate that PLEXIND1-mediated interactions can be selectively disrupted using a peptide based on its C-terminal sequence (a PDZ domain-binding motif), an outcome that may possess significant therapeutic implications. To our knowledge, this is the first report showing that (1) PLEXIND1 acts as a TGFß coreceptor and mediates SMAD3 signaling, and (2) differential roles of PLEXIND1 in PDAC cell lines correlate with KRASmut and KRASwt status.

12.
Nanomedicine (Lond) ; 16(8): 641-656, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33769068

RESUMEN

Background: Thymoquinone (TQ) has potential anti-inflammatory, immunomodulatory and anticancer effects but its clinical use is limited by its low solubility, poor bioavailability and rapid clearance. Aim: To enhance systemic bioavailability and tumor-specific toxicity of TQ. Materials & methods: Cationic liposomal formulation of TQ (D1T) was prepared via ethanol injection method and their physicochemical properties, anticancer effects in orthotopic xenograft pancreatic tumor model and pharmacokinetic behavior of D1T relative to TQ were evaluated. Results: D1T showed prominent inhibition of pancreatic tumor progression, significantly greater in vivo absorption, approximately 1.5-fold higher plasma concentration, higher bioavailability, reduced volume of distribution and improved clearance relative to TQ. Conclusion: Encapsulation of TQ in cationic liposomal formulation enhanced its bioavailability and anticancer efficacy against xenograft pancreatic tumor.


Asunto(s)
Liposomas , Benzoquinonas , Disponibilidad Biológica , Línea Celular Tumoral , Humanos , Solubilidad
13.
J Sci Food Agric ; 101(10): 4308-4314, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33417254

RESUMEN

BACKGROUND: Non-destructive determination of the internal quality of fruit with a thick rind and of a large size is always difficult and challenging. To investigate the feasibility of the dielectric spectroscopy technique with respect to determining the sugar content of melons during the postharvest stage, three cultivars of melon samples (160 melons for each cultivar) were used to acquire dielectric spectra over the frequency range 20-4500 MHz. The three cultivars of melons were divided separately into a calibration set and a prediction set in a ratio of 3:1 by a joint x-y distance algorithm. Partial least squares (PLS) and extreme learning machine (ELM) methods were applied to develop individual-cultivar and multi-cultivar models based on full frequencies (FFs) and effective dielectric frequencies (EDFs) selected by the successive projection algorithm (SPA). RESULTS: The results showed that ELM models demonstrated a better performance than PLS models for the same input dielectric variables. Most of the models built based on the EDFs selected by SPA had a slightly worse performance compared to those based on FFs. For both PLS and ELM methods, the models for multi-cultivars demonstrated a worse calibration and prediction performance compared to those for individual cultivars. When individual-cultivar and multi-cultivar samples were used to build sugar content determination models, the best model was FFs-ELM (Rp  = 0.887, RMSEP = 0.986), FFs-ELM (Rp  = 0.870, RMSEP = 1.028), FFs-PLS (Rp  = 0.882, RMSEP = 1.010) and FFs-ELM (Rp  = 0.849, RMSEP = 1.085) for 'Hongyanliang', 'Xinzaomi', 'Manao' and multi-cultivar melons, respectively. CONCLUSION: The present study indicates that it is possible to develop both individual-cultivar and multi-cultivar models for determining the sugar content of melons based on the dielectric spectroscopy technique. © 2021 Society of Chemical Industry.


Asunto(s)
Cucurbitaceae/química , Análisis de los Alimentos/métodos , Análisis Espectral/métodos , Azúcares/análisis , Algoritmos , Cucurbitaceae/clasificación , Análisis de los Alimentos/instrumentación , Frutas/química , Frutas/clasificación , Aprendizaje Automático , Control de Calidad , Análisis Espectral/instrumentación
14.
Oncogene ; 39(48): 7114-7126, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33005016

RESUMEN

Glioblastoma multiforme (GBM) is a highly proliferative and locally invasive cancer with poor prognosis and a high recurrence rate. Although anti-VEGF (vascular endothelial growth factor) therapy offers short-term benefit to GBM patients, this approach fails as the tumor develops into a more invasive and drug-resistant phenotype and ultimately recurs. Recently, both glioma stemlike cells (GSCs) and brain tumor-initiating cells (BTICs) have been implicated in GBM recurrence and its resistance to therapy. We observed that patient-derived GBM cells expressing shRNAs of VEGF or neuropilin-1 (NRP-1) attenuate cancer stem cell markers, inhibit the tumor-initiating cell's neurosphere-forming capacity, and migration. Furthermore, both VEGF and NRP-1 knockdown inhibit the growth of patient-derived GBM xenografts in both zebrafish and mouse models. Interestingly, NRP-1-depleted patient-derived GBM xenografts substantially prolonged survival in mice compared to that of VEGF depletion. Our results also demonstrate that NRP-1 ablation of patient-derived GBM cells improves the sensitivity of TMZ and enhances the overall survival of the respective tumor-bearing mice. This improved outcome may provide insight into the inhibition of GBM progression and effective treatment strategies by targeting NRP-1 in addition to chemotherapy and radiotherapy.


Asunto(s)
Resistencia a Antineoplásicos/genética , Técnicas de Silenciamiento del Gen , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Neuropilina-1/deficiencia , Neuropilina-1/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica , Glioblastoma/patología , Humanos , Ratones , Fenotipo , Análisis de Supervivencia , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Cancers (Basel) ; 12(5)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397114

RESUMEN

Despite recent advancements, effective treatment for pancreatic ductal adenocarcinoma (PDAC) has remained elusive. The overall survival rate in PDAC patients has been dismally low due to resistance to standard therapies. In fact, the failure of monotherapies to provide long-term survival benefits in patients led to ascension of several combination therapies for PDAC treatment. However, these combination therapies provided modest survival improvements while increasing treatment-related adverse side effects. Hence, recent developments in drug delivery methods hold the potential for enhancing therapeutic benefits by offering cocktail drug loading and minimizing chemotherapy-associated side effects. Nanoformulations-aided deliveries of anticancer agents have been a success in recent years. Yet, improving the tumor-targeted delivery of drugs to PDAC remains a major hurdle. In the present paper, we developed several new tumor-targeted dual intervention-oriented drug-encapsulated (DIODE) liposomes. We successfully formulated liposomes loaded with gemcitabine (G), paclitaxel (P), erlotinib (E), XL-184 (c-Met inhibitor, X), and their combinations (GP, GE, and GX) and evaluated their in vitro and in vivo efficacies. Our novel DIODE liposomal formulations improved median survival in comparison with gemcitabine-loaded liposomes or vehicle. Our findings are suggestive of the importance of the targeted delivery for combination therapies in improving pancreatic cancer treatment.

16.
Epilepsy Behav ; 106: 107022, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32217419

RESUMEN

OBJECTIVE: We developed and validated a prediction score for predicting the probability of 6-month and 12-month seizure freedom of antiepileptic drug (AED) treatment in newly diagnosed patients with magnetic resonance imaging (MRI)-negative epilepsy. METHODS: The development cohort included 543 consecutive patients from the Epilepsy Center of Henan Provincial People's Hospital, while the validation cohorts included 493 consecutive patients in two independent cohorts. Univariate analysis and a forward and backward elimination of multivariate Cox regression analysis were used to select predictive factors. The performance of the score was evaluated with C-index, calibration plots, and decision curve analysis. The risk stratification was also performed. RESULTS: The score included five routinely available predictors including Circadian rhythms, Electroencephalography before AED treatment, Neuropsychiatric disorders, Perinatal brain injury, and History of central nervous system infection (CENPH score). When applied to the external validation cohort, the score showed good discrimination with C-index (development group: 0.83; validation group: 0.78), and calibration plots indicated well calibration, as well as the decision curve analysis showed good predictive accuracy and clinical values in four cohorts. The points of the score were categorized to the following three probability levels for predicting seizure freedom: high probability (0-83.11 points), medium probability (83.11-122.71 points), and low probability (>122.71 points). And online calculator was established to make this score easily applicable in clinical practice. CONCLUSIONS: We established a simple, practical, and evidence-based prediction score for predicting seizure freedom with AEDs to aid in the clinical consultation and treatment decision for the newly diagnosed patients with MRI-negative epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/diagnóstico por imagen , Epilepsia/tratamiento farmacológico , Imagen por Resonancia Magnética/métodos , Convulsiones/diagnóstico por imagen , Convulsiones/tratamiento farmacológico , Adolescente , Adulto , Estudios de Cohortes , Electroencefalografía/métodos , Epilepsia/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Embarazo , Estudios Retrospectivos , Convulsiones/fisiopatología , Resultado del Tratamiento , Adulto Joven
17.
NPJ Precis Oncol ; 3: 31, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31840081

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is known for its highly vascular phenotype which is associated with elevated expression of vascular endothelial growth factor A (VEGF), also known as vascular permeability factor (VPF). Accordingly, VEGF has been an attractive target for antiangiogenic therapies in ccRCC. Two major strategies have hitherto been utilized for VEGF-targeted antiangiogenic therapies: targeting VEGF by antibodies, ligand traps or aptamers, and targeting the VEGF receptor signaling via antibodies or small-molecule tyrosine-kinase inhibitors (TKIs). In the present article we utilized two entirely different approaches: targeting mammalian target of rapamycin (mTOR) pathway that is known to be involved in VEGF synthesis, and disruption of VEGF/Neuroplin-1 (NRP1) axis that is known to activate proangiogenic and pro-tumorigenic signaling in endothelial and tumor cells, respectively. Everolimus (E) and a small-molecule inhibitor EG00229 (G) were used for the inhibition of mTOR and the disruption of VEGF/NRP1 axis, respectively. We also exploited a liposomal formulation decorated with a proprietary tumor-targeting-peptide (TTP) to simultaneously deliver these two agents in a tumor-targeted manner. The TTP-liposomes encapsulating both Everolimus and EG00229 (EG-L) demonstrated higher in vitro and in vivo growth retardation than the single drug-loaded liposomes (E-L and G-L) in two different ccRCC models and led to a noticeable reduction in lung metastasis in vivo. In addition, EG-L displayed remarkable inhibition of tumor growth in a highly aggressive syngeneic immune-competent mouse model of ccRCC developed in Balb/c mice. Taken together, this study demonstrates an effective approach to achieve improved therapeutic outcome in ccRCC.

18.
Nanoscale ; 11(45): 22006-22018, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31710073

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Nanomedicine, however, offers new opportunities to facilitate drug delivery in PDAC. Our previous work has shown that poly(ethylene glycol)-functionalized nanodiamond (ND) mediated drug delivery offered a considerable improvement over free drug in PDAC. Inspired by this result and guided by molecular simulations, we opted for simultaneous loading of irinotecan and curcumin in ultra-small PEGylated NDs (ND-IRT + CUR). We observed that ND-IRT + CUR was more efficacious in killing AsPC-1 and PANC-1 cells than NDs with single drugs. Using NDs functionalized with a near-infrared (NIR) dye, we demonstrated the preferential localization of the NDs in tumors and metastatic lesions. We further demonstrate that ND-IRT + CUR is capable of producing pronounced anti-tumor effects in two different clinically relevant, immune-competent genetic models of PDAC. Cytokine profiling indicated that NDs with or without drugs downregulated the expression of IL-10, a key modulator of the tumor microenvironment. Thus, using a combination of in silico, in vitro, and in vivo approaches, we show for the first time the remarkable anti-tumor efficacy of PEGylated NDs carrying a dual payload of irinotecan plus curcumin. These results highlight the potential use of such nano-carriers in the treatment of patients with pancreatic cancer.


Asunto(s)
Curcumina , Portadores de Fármacos , Nanodiamantes , Neoplasias Pancreáticas , Animales , Línea Celular Tumoral , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Ratones , Ratones Mutantes , Nanodiamantes/química , Nanodiamantes/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
20.
Bioconjug Chem ; 30(10): 2703-2713, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31584260

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has one of the highest mortality rates among cancers. Chemotherapy is the standard first-line treatment, but only modest survival benefits are observed. With the advent of targeted therapies, epidermal growth factor receptor (EGFR) has been acknowledged as a prospective target in PDAC since it is overexpressed in up to 60% of cases. Similarly, the tyrosine-protein kinase Met (cMET) is also overexpressed in PDAC (27-60%) and is a prognostic marker for poor survival. Interestingly, EGFR and cMET share some common signaling pathways including PI3K/Akt and MAPK pathways. Small molecule inhibitors or bispecific antibodies that can target both EGFR and cMET are therefore emerging as novel options for cancer therapy. We previously developed a dual EGFR and cMET inhibitor (N19) that was able to inhibit tumor growth in nonsmall cell lung cancer models resistant to EGFR tyrosine kinase inhibitors (TKI). Here, we report the development of a novel liposomal formulation of N19 (LN19) and showed significant growth inhibition and increased sensitivity toward gemcitabine in the pancreatic adenocarcinoma orthotopic xenograft model. Taken together, our results suggest that LN19 can be valued as an effective combination therapy with conventional chemotherapy such as gemcitabine for PDAC patients.


Asunto(s)
Adenocarcinoma/patología , Diseño de Fármacos , Liposomas/química , Neoplasias Pancreáticas/patología , Polietilenglicoles/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacología , Composición de Medicamentos , Receptores ErbB/metabolismo , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Proteolisis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA