Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
Water Res ; 258: 121768, 2024 May 14.
Article En | MEDLINE | ID: mdl-38761594

Microplastics (MPs) are pervasive in the environment and inevitably undergo photoaging due to UV irradiation. This study delved into the dynamic releasing and transformation process of toxic chemicals from polystyrene microplastics (PS MPs) during photoaging, a subject that remains underexplored. It was revealed that photoaging led to substantial alterations in the physicochemical properties of PS MPs, initiating polymer chain scission and facilitating the release of a large number of toxic chemicals, including numerous organic compounds and several inorganic compounds. The kinetic analysis revealed a dynamic release pattern for PS MPs, where under varying UV intensities (2, 5, and 10 mW/cm2), the release rate (kDOC) initially increased and then decreased, peaking at a total irradiation energy of approximately 7 kW·h/m2. Furthermore, chemicals in leachate were transformed into compounds with smaller molecular weight, higher oxidized and greater unsaturated state over the prolonged photoaging. This transformation was primarily attributed to two reasons. Firstly, the aged PS MPs released chemicals with higher oxidized state compared to the pristine MPs. Secondly, the chemicals previously released underwent further reactions. Besides, among the complex leachate generated by aged PS MPs, the organic chemicals characterized by small molecular weight and high oxidized state exhibited notable acute toxicity, whereas heavy metal ions showed lesser toxicity, and anions were non-toxic. This study shed more light on the photoaging process of PS MPs, releasing characteristics of organic chemicals, and the potential environmental risks associated with plastic wastes.

2.
Chemosphere ; 353: 141536, 2024 Apr.
Article En | MEDLINE | ID: mdl-38423150

Chloramination was commonly used as disinfectant for killing pathogens in water. However, in this process, nitrogen-containing disinfection by-products (N-DBPs) would accidently form and subsequently rise toxicity. Here, we investigated acute toxicity variation and by-products formation during chloramination treatment on UV filter 2-hydroxy-4-methoxy-5-sulfonic acid benzophenone (BP-4). Under alkaline conditions, the acute toxicity of this system had significant increase. A total of 17 transformation products were tentatively identified, and for them, plausible transformation pathways were proposed. Noticeably, numerous aniline and nitrosobenzene analogs were detected, and the dramatic increase of acute toxicity in this system might be primarily attributed to the formation of benzoquinone and aniline analogs. Besides, bromophenol, iodophenol and iodobenzoquinone analogs exhibiting high toxicity were generated in the presence of bromine and iodide ions. This study indicates that chloramination treatment may significantly increase potential health risk, further management on disinfection system is reasonable.


Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection , Chloramines , Nitrogen , Halogenation , Water Pollutants, Chemical/analysis , Aniline Compounds , Chlorine
3.
Aquat Toxicol ; 267: 106813, 2024 Feb.
Article En | MEDLINE | ID: mdl-38183774

Nanoplastics can interact with antibiotics, altering their bioavailability and the ensuing toxicity in marine organisms. It is reported that plain polystyrene (PS) nanoplastics decrease the bioavailability and adverse effects of sulfamethazine (SMZ) on the gut microbiota in Oryzias melastigma. However, the influence of surface functional groups on the combined effects with SMZ remains largely unknown. In this study, adult O. melastigma were fed diet amended with 4.62 mg/g SMZ and 3.65 mg/g nanoplastics (i.e., plain PS, PS-COOH and PS-NH2) for 30 days (F0-E), followed by a depuration period of 21 days (F0-D). In addition, the eggs produced on the last day of exposure were cultured under standard protocols without further exposure for 2 months (F1 fish). The results showed that the alpha diversity or the bacterial community of gut microbiota did not differ among the SMZ + PS, SMZ + PS-COOH, and SMZ + PS-NH2 groups in the F0-E and F1 fish. Interestingly, during the depuration, a clear recovery of gut microbiota (e.g., increases in the alpha diversity, beneficial bacteria abundances and network complexity) was found in the SMZ + PS group, but not for the SMZ + PS-COOH and SMZ + PS-NH2 groups, indicating that PS-COOH and PS-NH2 could prolong the toxic effect of SMZ and hinder the recovery of gut microbiota. Compared to plain PS, lower egestion rates of PS-COOH and PS-NH2 were observed in O. melastigma. In addition, under the simulated fish digest conditions, the SMZ-loaded PS-NH2 was found to desorb more SMZ than the loaded PS and PS-COOH. These results suggested that the surface -COOH and -NH2 groups on PS could influence their egestion efficiency and the adsorption/desorption behavior with SMZ, resulting in a long-lasting SMZ stress in the gut during the depuration phase. Our findings highlight the complexity of the carrier effect and ecological risk of surface-charged nanoplastics and the interactions between nanoplastics and antibiotics in natural environments.


Gastrointestinal Microbiome , Oryzias , Water Pollutants, Chemical , Animals , Sulfamethazine/toxicity , Microplastics , Water Pollutants, Chemical/toxicity , Polystyrenes/toxicity , Anti-Bacterial Agents/toxicity
4.
Sci Total Environ ; 893: 164841, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37321489

The persistence of antibiotics and nanoplastics in aquatic environment poses a great threat to aquatic organisms. In our previous study, significant decreases of bacterial richness and changes of bacterial communities in the Oryzias melastigma gut after sulfamethazine (SMZ) and polystyrene nanoplastics (PS) exposure were observed. Here, the O. melastigma dietary exposed to SMZ (0.5 mg/g, LSMZ; 5 mg/g, HSMZ), PS (5 mg/g, PS) or PS + HSMZ were depurated for 21 days to assess the extent of which these effects were reversible. Our results revealed that most diversity indexes of bacterial microbiota in the O. melastigma gut from the treatment groups were insignificantly different from the control, suggesting a large recovery of bacterial richness. Although the sequence abundances of a few genera remained significantly changed, the proportion of dominant genus was recovered. Exposure to SMZ affected the complexity of the bacterial networks, and the cooperation and exchange events of positively associated bacteria were enhanced during this period. After depuration, increases in the complexity of networks and intense competitions among bacteria were observed, which was beneficial for the robustness of networks. However, the gut bacterial microbiota was less stable, and several functional pathways were dysregulated, relative to the control. In addition, higher occurrence of pathogenic bacteria was found in the PS + HSMZ group relative to the signal pollutant group after depuration, indicating a greater hazard for the mixture of PS and SMZ. Taken together, this study contributes to a better understanding of the recovery of bacterial microbiota in fish gut after individual and combined exposure to nanoplastics and antibiotics.


Gastrointestinal Microbiome , Oryzias , Water Pollutants, Chemical , Animals , Sulfamethazine/toxicity , Oryzias/metabolism , Microplastics/metabolism , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/metabolism
5.
Sci Total Environ ; 869: 161732, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36682552

Ca/Fe-rich antibiotic fermentation residues (AFRs), a type of hazardous waste, can be regarded as recyclable biomass and metal resources. However, concurrent detoxification and reutilization of biomass and metals resources from AFRs have never been reported before. In this study, Ca/Fe-rich vancomycin fermentation residues were pyrolyzed into biochar to adsorb phosphate for the first time. The residual vancomycin and antibiotic resistance genes were completely decomposed during pyrolysis. The resultant Ca/Fe-rich biochar exhibited excellent performance at adsorbing phosphate without further modifications. The process had rapid kinetics and a maximum adsorption capacity of 102 mg P/g. Ca and Fe were the active sites, whereas different mechanisms were observed under acidic and alkaline conditions. Surprisingly, HCO3- enhanced phosphate adsorption with an increase of adsorption capacity from 43.9 to 71.0 mg/g when HCO3- concentration increased from 1 to 10 mM. Furthermore, actual wastewater could be effectively treated by the biochar. The phosphate-rich spent biochar significantly promoted seed germination (germination rate: 96.7 % vs. 80.0 % in control group, p < 0.01) and seedling growth (shoot length was increased by 57.9 %, p < 0.01) due to the slow release of bioavailable phosphate, and thus could be potentially used as a phosphorous fertilizer. Consequently, the hazardous waste was turned into phosphorous fertilizer, with the additional benefits of detoxifying AFRs, reutilizing biomass and metal resources from AFRs, controlling phosphate pollution, and recovering phosphate from wastewater.


Phosphates , Wastewater , Phosphates/chemistry , Fertilizers , Fermentation , Anti-Bacterial Agents , Pyrolysis , Vancomycin , Hazardous Waste , Phosphorus , Charcoal/chemistry , Adsorption , Kinetics
6.
Chemistry ; 28(68): e202203594, 2022 Dec 06.
Article En | MEDLINE | ID: mdl-36461697

Invited for the cover of this issue is the group of Yu Wang, Feipeng Wang, and co-workers at Chongqing University. The image depicts how activated single-crystal Ti4 O7 nanosheets loaded with precious metals can be used as highly efficient and stable materials to make fuel-cell electrodes for intermittent renewable energy storage in power grids. Read the full text of the article at 10.1002/chem.202202580.

7.
Nat Commun ; 13(1): 7887, 2022 Dec 22.
Article En | MEDLINE | ID: mdl-36550148

For the upsurge of high breakdown strength ([Formula: see text]), efficiency ([Formula: see text]), and discharge energy density ([Formula: see text]) of next-generation dielectrics, nanocomposites are the most promising candidates. However, the skillful regulation and application of nano-dielectrics have not been realized so far, because the mechanism of enhanced properties is still not explicitly apprehended. Here, we show that the electric field cavity array in the outer interface of nanosieve-substrate could modulate the potential distribution array and promote the flow of free charges to the hole, which works together with the intrinsic defect traps of active Co3O4 surface to trap and absorb high-energy carriers. The electric field and potential array could be regulated by the size and distribution of mesoporous in 2-dimensional nano-sieves. The poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposites film exhibits an [Formula: see text] of 803 MV m-1 with up to 80% enhancement, accompanied by high [Formula: see text] = 41.6 J cm-3 and [Formula: see text]≈ 90%, outperforming the state-of-art nano-dielectrics. These findings enable deeper construction of nano-dielectrics and provide a different way to illustrate the intricate modification mechanism from macro to micro.

8.
Chemistry ; 28(68): e202202580, 2022 Dec 06.
Article En | MEDLINE | ID: mdl-36254788

The oxygen reduction reaction (ORR) is central to modern energy storage and conversion technologies for grids such as fuel cells and electrolyzers, but challenges remain due to the lack of reliable, economic, and durable electrocatalysts. Here, we develop single-crystal conductive black titanium (Ti4 O7 ) nanosheets (NSs) as a new precious metal carrier based on sacrificial hard templates and ultrasonic-assisted peeling, and deposit Pt clusters on Ti4 O7 NSs induced by wetness impregnation under the irradiation of visible light (VI; 650 nm). Pt/Ti4 O7 NSs provide Ti3+ , Pt2+ , and Pt0+ continuous active sites for the ORR multielectron process, achieving synergy among them. The assistance of visible light not only makes a more uniform and smaller distribution of Pt nanoclusters, but also strengthens the charge transfer, thereby constructing a strong metal-support interaction interface. VI-Pt/Ti4 O7 NSs show superior initial oxidation potential and a mass activity of 1.61 A mg-1 Pt at a E1/2 =0.91 V, which is nine times higher than that of commercial Pt/C. This work provides an effective strategy for achieving high-value applications of titanium sub-oxides and further explores the enhanced interface in metals Tin O2n-1 by light radiation.

9.
J Environ Manage ; 323: 116154, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36095989

River-reservoir systems have become ubiquitous among modern global aquatic environments due to the widespread construction of dams. However, little is known of antibiotic resistance gene (ARG) distributions in reservoir-river systems experiencing varying degrees of anthropogenic impacts. Here, the diversity, abundance, and spatial distribution of ARGs were comprehensively characterized along the main stem of the Minjiang River, a typical subtropic reservoir-river system in Southeast China using high-throughput quantitative PCR. A total of 252 ARG subtypes were detected from twelve sampling sites that were dominated by aac(3)-Via, followed by czcA, blaTEM, and sul1. Urban river waters (sites S9-S12) harbored more diverse ARGs than did the reservoir waters (sites S1-S7), indicating more serious antibiotic resistance pollution in areas with larger population densities. Dam construction could reduce the richness and absolute abundance of ARGs from upstream (site S7) to downstream (site S8). Urban river waters also harbored a higher proportion of mobile genetic elements (MGEs), suggesting that intensive human activities may promote ARG horizontal gene transfers. The mean relative abundance of Proteobacteria that could promote antibiotic resistance within microbial communities was also highest in urban river waters. Variance partitioning analysis indicated that MGEs and bacterial communities could explain 67.33%, 44.7%, and 90.29% of variation in selected ARGs for the entire watershed, aquaculture waters, and urban river waters, respectively. These results further suggest that urban rivers are ideal media for the acquisition and spread of ARGs. These findings provide new insights into the occurrence and potential mechanisms determining the distributions of ARGs in a reservoir-river system experiencing various anthropogenic disturbances at the watershed scale.


Anti-Bacterial Agents , Genes, Bacterial , Anthropogenic Effects , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Microbial/genetics , Humans
10.
ACS Appl Mater Interfaces ; 14(34): 39354-39363, 2022 Aug 31.
Article En | MEDLINE | ID: mdl-35984869

Heat dissipation is necessary for the safer operation of high-power electronic devices and high-capacity batteries. Thermal meta-materials can efficiently manipulate heat flow by molding natural materials into specific structures. In this study, we construct a three-dimensional-printed meta-material structure with efficient and deterministic heat conduction through combining the 2D boron nitride (BN) with nano-diamond (DM) bridging. A research of thermal conductivity and dielectric properties exhibits that the nanosized diamond-bridged and oriented 2D boron nitride endows efficient heat transfer and maintains low dielectric loss with low filler loading. The composites loaded with 19 wt% BN platelets and 1 wt% DM have the highest thermal conductivity of 3.687 W/(m·K) in the heat flow orientation, while the thermal conductivity is only 0.632 W/(m·K) in the vertical heading of heat flow. The thermal conductive networks with thermal meta-materials based on the structural characteristics have been designed to secure critical device components from the heat source and dissipate heat flow in a definite way. The infrared images show that the temperature difference of monitoring points in different directions on the BN-oriented composite substrate is 9 °C, which realizes the protection of the heat source and key components. This study shows the latent capacity of 3D-printed structured materials for critical device component protection and heat administration applications in electronic devices and electric equipment.

11.
Polymers (Basel) ; 14(13)2022 Jun 28.
Article En | MEDLINE | ID: mdl-35808675

Insulating oil is a pivotal component of power transformers, but it suffers from aging byproducts during service operation. The aging byproducts from the degradation of oil insulation tend to induce insulation failure, which poses a significant threat to the security of the power grid. Therefore, the regeneration of insulating oil is required to prolong the useful life of insulating oil and hence be of economic and ecological interests. Typical in-use oil regeneration routes employ multi-step procedures. In this work, a one-step regeneration method using a PVDF/BaTiO3 composite membrane is proposed. BaTiO3 endows the composite membrane with improved hydrophobicity and an electret state. The regeneration performance of the PVDF/BaTiO3 nanofiber membrane was assessed by considering the acid value, moisture content, dielectric loss factor tan δ, and the AC breakdown voltage of the refreshed oil. The test results showed that the filtration efficiencies toward formic acid and moisture were up to 77.5% and 60.6%, respectively. Moreover, the dielectric loss factor tan δ of the refreshed oil decreased evidently at a power frequency, and the AC breakdown voltage rose from 23.7 kV to 38.9 kV. This suggests that the PVDF/BaTiO3 composite membrane may be employed efficiently, and it minimizes aging byproducts via the one-step filtration.

12.
Materials (Basel) ; 15(13)2022 Jul 04.
Article En | MEDLINE | ID: mdl-35806813

Exploring impressively effective dielectric nanofluids for transformers to improve dielectric strength and thermal stability is indispensable. It is crucial to determine the modification mechanism of dispersed nanomaterials in insulating oil for operative applications in power transformers. This paper aspires to authenticate the experimental evidence of the enhancing AC dielectric strength of synthetic ester Midel-7131 using two newly introduced semiconductive nanoparticles, CdS and Co3O4, and uncover the potential reasons for enhanced AC dielectric strength. The AC breakdown voltage (BDV) of synthetic ester and nanofluids was investigated and statistically evaluated. The mean AC breakdown voltage of SE/CdS and SE/Co3O4 was increased by 31.9% and 31.3%, respectively. The augmentation in AC breakdown strength is possibly due to the facilitated charge-scavenging ability owing to the large specific surface area and wide bandgap. Simultaneous thermogravimetric analysis, differential scanning calorimetry, and derivative thermogravimetry analyses (TGA-DSC-DTG) confirmed that the initial decomposition temperature was high and heat dissipation was low, indicating that the nanofluids were thermally stable in both air and nitrogen. Hence, emerging semiconductive CdS and Co3O4-based nanofluids of synthetic ester possess remarkable dielectric strength and thermal stability enhancement for their application in power transformers.

13.
Anal Chem ; 94(30): 10643-10650, 2022 08 02.
Article En | MEDLINE | ID: mdl-35830694

Dissolved organic matter (DOM) has been used frequently to distinguish different environmental samples based on its abundant fingerprint information. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is the most powerful technique to analyze the complex composition of DOM. Balancing between the reproducibility of peak magnitude and peak diversity is a key factor for achieving reliable and reproducible fingerprint information of DOM with FT-ICR-MS. In this paper, a novel magnitude filter (MGF) method and a novel MS-MGF strategy were proposed to improve the data reproducibility of FT-ICR-MS analysis. With the MS-MGF strategy, a 20% magnitude filter threshold (TMGF) was recommended to remove magnitude outliers, and a relatively low signal-to-noise ratio (SNR) threshold of 3.5 was recommended to retain those low but stable-magnitude peaks. The total relative magnitude was recommended since it could obtain better reproducibility of MS analysis compared to other types of peak magnitude. In addition, three replicates were enough to obtain satisfactory reproducibility. More importantly, the proposed MS-MGF strategy was also adaptable to different FT-ICR-MS instruments and different experimental conditions. Overall, the results are expected to initiate the promising applications of the MS-MGF strategy to distinguish the reliable fingerprint characteristics of DOM samples from different sources.


Dissolved Organic Matter , Mass Spectrometry/methods , Reproducibility of Results
14.
Huan Jing Ke Xue ; 43(4): 2007-2017, 2022 Apr 08.
Article Zh | MEDLINE | ID: mdl-35393824

Bacteria play a key role in the removal of pollutants and nutrients in constructed wetlands. DNA and RNA high-throughput sequencing was used to investigate the diversity, metabolic activity, and function of bacteria in aquaculture wastewater and in constructed wetlands treated by different aeration levels. The results revealed that:① a total of 4042 operational taxonomic units (OTUs) were detected in aquaculture wastewater and constructed wetland treatment groups. α-Proteobacteria, γ-Proteobacteria, and Bacteroidia were the most diverse groups, and the constructed wetlands aeration treatment increased the bacterial diversity to a variable extent; ② α-Proteobacteria, γ-Proteobacteria, Bacteroidia, and Actinobacteria were the dominant groups both in the DNA and RNA sequencing results, and the metabolic activities of these four groups were significantly affected by the concentration of total nitrogen (TN) and nitrate nitrogen (NO3--N) in our study. ③ According to the FAPROTAX database, 56 bacterial functional groups were detected in our study, mainly including:chemoheterotrophy, aerobic chemoheterotrophy, fermentation, intracellular parasites, dark hydrogen oxidation, phototrophy, photoheterotrophy, and nitrate reduction. Functions related to the nitrogen cycle were observed in the results of function annotation, suggesting the important role of bacterial communities in the removal of nitrogen nutrients in constructed wetlands. These results will improve the understanding of bacterial community structures and functions during nutrient removal in aerated constructed wetlands.


Wastewater , Wetlands , Bacteria/genetics , Nitrates , Nitrogen/analysis , Waste Disposal, Fluid/methods
15.
Nanomaterials (Basel) ; 12(5)2022 Feb 26.
Article En | MEDLINE | ID: mdl-35269284

Tailoring the secondary surface morphology of electro-spun nanofibers has been highly desired, as such delicate structures equip nanofibers with distinct functions. Here, we report a simple strategy to directly reconstruct the surface of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) nanofibers by water evaporation. The roughness and diameter of the nanofibers depend on the temperature during vacuum drying. Surface changes of the nanofibers from smooth to rough were observed at 55 °C, with a significant drop in nanofiber diameter. We attribute the formation of the secondary surface morphology to the intermolecular forces in the water vapor, including capillary and the compression forces, on the basis of the results from the Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy. The strategy is universally effective for various electro-spun polymer nanofibers, thus opening up avenues toward more detailed and sophisticated structure design and implementation for nanofibers.

16.
Nanoscale ; 14(10): 3878-3887, 2022 Mar 10.
Article En | MEDLINE | ID: mdl-35201244

Developing cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is of great significance for the renewable energy field. The Magnéli phase TinO2n-1 (4 ≤ n ≤ 10) has attracted much attention as a promising carbon-free support for electrocatalysts due to its high electrical conductivity and favorable electrochemical stability. Herein, we report the synthesis of a specific crystal-plane coupling heterostructure between Au(111) nanoparticles (NPs) and Ti6O11 by photoreduction. Benefitting from the modification of the electronic structure and synergistic effects of the heterostructure, the electron density around Au atoms is enhanced, and the Gibbs free energy of hydrogen absorption (ΔGH*) was dramatically optimized to facilitate the HER process. The best electrocatalyst Au(111)@Ti6O11-50 exhibits a lower overpotential of 49 mV at a current density of -10 mA cm-2 and a Tafel slope of 39 mV dec-1 in 0.5 M H2SO4, and shows long-term electrochemical stability over 30 h. Au(111)@Ti6O11-50 shows a mass activity of 9.25 A mgAu-1, which is about 18 times higher than that of commercial Pt/C (0.51 A mgPt-1). Meanwhile, the density functional theory (DFT) calculations suggest that the ΔGH* of Au(111)@Ti6O11 is -0.098 eV, which is comparable to that of Pt (-0.09 eV). This work would be a powerful guide for the realization of efficient utilization of noble metals in catalysis.

17.
Sci Total Environ ; 817: 152945, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35007605

Triphenyl phosphate (TPhP), a prevalent pollutant in the aquatic environment, has been reported to induce neurotoxicity (e.g., a suppression in locomotor activity) in fish larvae, posing a great threat to fish populations. However, the underlying mechanism was not fully revealed. In this study, the Oryzias melastigma larvae (21 dph) were exposed to waterborne TPhP (20 and 100 µg/L) for 7 days and a decreased locomotor activity was found. After exposure, the brain transcriptome and communities of gut microbiota were investigated to explore the potential mechanism underlying the suppressed locomotor activity by TPhP. The results showed that 1160 genes in the brain were dysregulated by TPhP, of which 24 genes were identified as being highly associated with the neural function and development (including nerve regeneration, neuronal growth and differentiation, brain ion homeostasis, production of neurotransmitters and etc), suggesting a general impairment in the central nervous system. Meanwhile, TPhP caused disorders in the gut microbiota. The relative abundance of Gammaproteobacteria and Alphaproteobacteria, which can influence the brain functions of host via the microbiota-gut-brain axis, were significantly altered by TPhP. Furthermore, the Redundancy analysis (RDA) revealed positive correlations between the intestinal genera Ruegeria, Roseivivax and Nautella and the dysregulated brain genes by TPhP. These results suggest that TPhP might impair the central nervous system of the O. melastigma larvae not only directly but also through the microbiota-gut-axis (indirectly), contributing to the suppressed locomotor activity. These findings enrich our mechanistic understanding of the toxicity of TPhP in fish larvae and shed preliminary light on the involvement of microbiota-gut-brain axis in the neurotoxicity of environmental pollutants.


Gastrointestinal Microbiome , Oryzias , Water Pollutants, Chemical , Animals , Brain-Gut Axis , Larva , Organophosphates , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
18.
J Hazard Mater ; 423(Pt A): 127003, 2022 02 05.
Article En | MEDLINE | ID: mdl-34474367

The individual and combined toxicity of antibiotics and nanoplastics in marine organisms has received increasing attention. However, many studies have been mostly focused on the impacts on the directly exposed generation (F0). In this study, intergenerational effects of sulfamethazine (SMZ) and nanoplastic fragments (polystyrene, PS) on the growth and the gut microbiota of marine medaka (Oryzias melastigma) were investigated. The results showed that parental exposure to dietary SMZ (4.62 mg/g) alone and PS (3.45 mg/g) alone for 30 days decreased the body weight (by 13.41% and 34.33%, respectively) and altered the composition of gut microbiota in F1 males (two months after hatching). Interestingly, parental exposure to the mixture of SMZ and PS caused a more modest decrease in the body weight of F1 males than the PS alone (15.60% vs 34.33%). The hepatic igf1 level and the relative abundance of the host energy metabolism related phylum Bacteroidetes for the SMZ + PS group were significantly higher than those for the PS group (igf1, increased by 97.1%; Bacteroidetes, 2.876% vs 0.375%), suggesting that the parentally derived mixture of SMZ and PS might influence the first microbial colonization of gut in a different way to the PS alone. This study contributes to a better understanding of the long-term risk of antibiotics and nanoplastics to marine organisms.


Gastrointestinal Microbiome , Oryzias , Water Pollutants, Chemical , Animals , Male , Microplastics , Sulfamethazine/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
Lasers Med Sci ; 37(2): 1127-1138, 2022 Mar.
Article En | MEDLINE | ID: mdl-34283306

To evaluate the efficacy and safety of laser alone therapy and laser combination therapy (mainly combined with other kinds of laser or steroids) for keloid.PubMed, Embase and Web of Science were searched for relevant articles from inception to June 2020. Comprehensive Meta-Analysis software 2.0 (CMA) was used to perform the meta-analysis.A total of 29 articles were included in this meta-analysis. During the mean follow-up of 14 (1-84) months, the overall improvement rates of baseline Vancouver scar scale (VSS) score and itch were 0.454 (95%CI 0.351-0.561, I2 = 0) and 0.786 (95%CI 0.613-0.895, I2 = 0) in the laser combination therapy group. The improvement rates of scar height and flexibility in the laser combination therapy group were 0.629 (95%CI 0.519-0.727, I2 = 52.089) and 0.784 (95%CI 0.251-0.975, I2 = 89.420). The average improvement rate of the scar score in laser combination therapy was 0.338 (0.201-0.510); however, there were insufficient data for laser alone therapy comparison. The laser combination therapy had a greater pain improvement rate, 0.580 (0.389-0.750) versus 0.420 (0.224-0.645), compared to laser alone therapy, and a greater degree of good or excellent (> 50%) improvement in the overall scar, 0.636 (95%CI 0.347-0.852) versus 0.149 (95%CI 0.032-0.482), with laser alone therapy. Moreover, a lower regrowth rate of 0.187 (0.129-0.263) versus 0.249 (0.060-0.631), a lower post-treatment pigmentation rate of 0.125 (0.091-0.169) versus 0.135 (0.058-0.282), and a lower infection rate of 0.047 (0.009-0.209) versus 0.076 (0.012-0.351) were observed in the laser combination therapy compared with those rates in the laser alone therapy.The overall effect of laser combination therapy was better than that of laser alone therapy, and the incidence of adverse reactions was lower in laser combination therapy than in laser alone therapy.


Cicatrix, Hypertrophic , Keloid , Laser Therapy , Low-Level Light Therapy , Cicatrix, Hypertrophic/pathology , Humans , Keloid/pathology , Keloid/radiotherapy , Laser Therapy/adverse effects , Lasers , Low-Level Light Therapy/adverse effects
20.
Nat Plants ; 8(1): 45-52, 2022 01.
Article En | MEDLINE | ID: mdl-34949802

The ability to manipulate the genome in a programmable manner has illuminated biology and shown promise in plant breeding. Prime editing, a versatile gene-editing approach that directly writes new genetic information into a specified DNA site without requiring double-strand DNA breaks, suffers from low efficiency in plants1-5. In this study, N-terminal reverse transcriptase-Cas9 nickase fusion performed better in rice than the commonly applied C-terminal fusion. In addition, introduction of multiple-nucleotide substitutions in the reverse transcriptase template stimulated prime editing with enhanced efficiency. By using these two methods synergistically, prime editing with an average editing frequency as high as 24.3% at 13 endogenous targets in rice transgenic plants, 6.2% at four targets in maize protoplasts and 12.5% in human cells was achieved, which is two- to threefold higher than the original editor, Prime Editor 3. Therefore, our optimized approach has potential to make more formerly non-editable target sites editable, and expands the scope and capabilities of prime editing in the future.


Gene Editing , Oryza , CRISPR-Cas Systems , Gene Editing/methods , Oryza/genetics , Plant Breeding , Plants, Genetically Modified/genetics
...