Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39322801

RESUMEN

In this study, a new near-infrared (NIR) fluorescent turn-on probe featuring a large Stokes shift (198 nm) was developed for the detection of biothiols. The probe was based on a dicyanoisophorone derivative serving as the fluorophore and a 2,4-dinitrobenzenesulfonyl (DNBS) group functioning as both a recognition site and a fluorescence quencher. In the absence of biothiols, the fluorescence of the probe was low due to the photoinduced electron transfer (PET) effect between the fluorophore and DNBS. Upon the presence of biothiols, the DNBS group underwent a nucleophilic aromatic substitution reaction with the sulfhydryl group of biothiols, leading to the release of the fluorophore and a notable emission peak at 668 nm. This developed probe exhibited exceptional selectivity and sensitivity to biothiols in solution, with an impressive detection limit of 28 nM for cysteine (Cys), 22 nM for homocysteine (Hcy), and 24 nM for glutathione (GSH). Furthermore, the probe demonstrated its applicability by successfully visualizing both endogenous and exogenous biothiols in living systems.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124846, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39059262

RESUMEN

Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play distinct yet crucial roles in various mitochondrial physiological activities. However, due to their similar chemical structures, distinguishing and detecting Cys/Hcy/GSH poses a considerable challenge. In this study, we developed a dual-channel, mitochondrial-targeted fluorescent probe termed QX-NBD, designed specifically for discriminating Cys/Hcy from GSH. The incorporation of a quinolinium group endowed the probe with excellent mitochondrial targeting capabilities. This functionality arose from the positively charged group's ability to selectively bind to negatively charged mitochondrial membranes through electrostatic interactions. Additionally, the ether bond between 4-chloro-7-nitro-1,2,3-benzoxadiazole and the near-infrared fluorophore QX-OH rendered the probe susceptible to nucleophilic attack by biothiols. Upon the introduction of Cys/Hcy, the probe exhibited dual fluorescence emissions in red and green. Conversely, the presence of GSH resulted in only red fluorescence emission. The detection limits of the probe for Cys and Hcy at 542 nm in buffer solution were determined to be 0.044 µM and 0.042 µM, respectively. Similarly, the detection limit for all these biothiols was 0.028 µM at 678 nm. Furthermore, the response times for Cys/Hcy/GSH were recorded as 4.0 min, 5.5 min, and 9.5 min, respectively. Moreover, the probe was employed to monitor fluctuations in biothiol levels during oxidative stress in both HeLa cells and zebrafish, demonstrating its applicability and utility in biological contexts.


Asunto(s)
Colorantes Fluorescentes , Homocisteína , Mitocondrias , Pez Cebra , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Humanos , Mitocondrias/metabolismo , Mitocondrias/química , Células HeLa , Homocisteína/análisis , Homocisteína/metabolismo , Homocisteína/análogos & derivados , Compuestos de Sulfhidrilo/análisis , Compuestos de Sulfhidrilo/química , Glutatión/análisis , Glutatión/metabolismo , Cisteína/análisis , Espectrometría de Fluorescencia/métodos , Límite de Detección , Imagen Óptica/métodos
3.
Org Lett ; 26(26): 5539-5543, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38913774

RESUMEN

A highly stereoselective coupling reaction of diazooxindoles with difluoroenoxysilanes catalyzed by Lewis acidic boranes has been developed. The reaction proceeded at ambient temperature under transition metal-free conditions with wide functional group tolerance. By using this simple procedure, a series of tetrasubstituted monofluoroalkenes can be accessed in good yield with high selectivity.

4.
Analyst ; 149(12): 3356-3362, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38712511

RESUMEN

Many diseases in the human body are related to the overexpression of viscosity and sulfur dioxide. Therefore, it is essential to develop rapid and sensitive fluorescent probes to detect viscosity and sulfur dioxide. In the present work, we developed a dual-response fluorescent probe (ES) for efficient detection of viscosity and sulfur dioxide while targeting mitochondria well. The probe generates intramolecular charge transfer by pushing and pulling the electron-electron system, and the ICT effect is destroyed and the fluorescence quenched upon reaction with sulfite. The rotation of the molecule is inhibited in the high-viscosity system, producing a bright red light. In addition, the probe has good biocompatibility and can be used to detect sulfite in cells, zebrafish and mice, as well as upregulation of viscosity in LPS-induced inflammation models. We expect that the dual response fluorescent probe ES will be able to detect viscosity and sulfite efficiently, providing an effective means of detecting viscosity and sulfite-related diseases.


Asunto(s)
Colorantes Fluorescentes , Inflamación , Mitocondrias , Sulfitos , Pez Cebra , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/toxicidad , Animales , Sulfitos/química , Sulfitos/análisis , Viscosidad , Mitocondrias/metabolismo , Mitocondrias/química , Ratones , Humanos , Inflamación/inducido químicamente , Dióxido de Azufre/análisis , Dióxido de Azufre/química , Lipopolisacáridos , Células RAW 264.7 , Imagen Óptica/métodos
5.
Int J Biol Macromol ; 267(Pt 1): 131575, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614178

RESUMEN

Wound healing is a dynamic and complex process, it's urgent to develop new wound dressings with excellent performance to promote wound healing at the different stages. Here, a novel composite hydrogel dressing composed by silver nanoparticles (AgNPs) impregnated adenine-modified chitosan (CS-A) and octafunctionalized polyhedral oligomeric silsesquioxane (POSS) of benzaldehyde-terminated polyethylene glycol (POSS-PEG-CHO) solution was presented to solve the problem of wound infection. Modification of chitosan with adenine, not only can improve the water solubility of chitosan, but also introduce bioactive substances to promote cell proliferation. CS-A and POSS-PEG-CHO were cross-linked by Schiff-base reaction to form the injectable self-healing hydrogel. On this basis, AgNPs were added into the hydrogel, which endows the hydrogel with better antibacterial activity. Moreover, this kind of hydrogel exhibits excellent cell proliferation properties. Studies demonstrated that the hydrogel can significantly accelerate the closure of infected wounds. The histological analysis and immunofluorescence staining demonstrated that the wounds treated with the composite hydrogel exhibited fewer inflammatory cells, more collagen deposition and angiogenesis, faster regeneration of epithelial tissue. Above all, adenine-modified chitosan composite hydrogel with AgNPs loaded was considered as a dressing material with great application potential for promoting the healing of infected wounds.


Asunto(s)
Adenina , Antibacterianos , Proliferación Celular , Quitosano , Hidrogeles , Nanopartículas del Metal , Polietilenglicoles , Plata , Cicatrización de Heridas , Quitosano/química , Quitosano/farmacología , Cicatrización de Heridas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Polietilenglicoles/química , Plata/química , Plata/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Nanopartículas del Metal/química , Adenina/farmacología , Adenina/química , Ratones , Compuestos de Organosilicio/química , Compuestos de Organosilicio/farmacología , Ratas , Humanos , Infección de Heridas/tratamiento farmacológico
6.
Artículo en Inglés | MEDLINE | ID: mdl-38573720

RESUMEN

We use a computational model of memory search to study how people generate counterfactual outcomes in response to an established target outcome. Hierarchical Bayesian model fitting to data from six experiments reveals that counterfactual outcomes that are perceived as more desirable and more likely to occur are also more likely to come to mind and are generated earlier than other outcomes. Additionally, core memory mechanisms such as semantic clustering and word frequency biases have a strong influence on retrieval dynamics in counterfactual thinking. Finally, we find that the set of counterfactuals that come to mind can be manipulated by modifying the total number of counterfactuals that participants are prompted to generate, and our model can predict these effects. Overall, our findings demonstrate how computational memory search models can be integrated with current theories of counterfactual thinking to provide novel insights into the process of generating counterfactual thoughts. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

7.
Nat Commun ; 15(1): 1415, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418465

RESUMEN

Optic neuritis (ON) is associated with numerous immune-mediated inflammatory diseases, but 50% patients are ultimately diagnosed with multiple sclerosis (MS). Differentiating MS-ON from non-MS-ON acutely is challenging but important; non-MS ON often requires urgent immunosuppression to preserve vision. Using data from the United Kingdom Biobank we showed that combining an MS-genetic risk score (GRS) with demographic risk factors (age, sex) significantly improved MS prediction in undifferentiated ON; one standard deviation of MS-GRS increased the Hazard of MS 1.3-fold (95% confidence interval 1.07-1.55, P < 0.01). Participants stratified into quartiles of predicted risk developed incident MS at rates varying from 4% (95%CI 0.5-7%, lowest risk quartile) to 41% (95%CI 33-49%, highest risk quartile). The model replicated across two cohorts (Geisinger, USA, and FinnGen, Finland). This study indicates that a combined model might enhance individual MS risk stratification, paving the way for precision-based ON treatment and earlier MS disease-modifying therapy.


Asunto(s)
Esclerosis Múltiple , Neuritis Óptica , Humanos , Puntuación de Riesgo Genético , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/genética , Esclerosis Múltiple/complicaciones , Neuritis Óptica/diagnóstico , Neuritis Óptica/genética , Neuritis Óptica/complicaciones , Factores de Riesgo , Finlandia
8.
Biosens Bioelectron ; 246: 115868, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38029709

RESUMEN

Hydroxyl radical (•OH), one of the most reactive and deleterious substances in organisms, belongs to a class of reactive oxygen species (ROS), and it has been verified to play an essential role in numerous pathophysiological scenarios. However, due to its extremely high reactivity and short lifetime, the development of a reliable and robust method for tracking endogenous •OH remains an ongoing challenge. In this work, we presented the first ratiometric fluorescent nanoprobe NanoDCQ-3 for •OH sensing based on oxidative C-H abstraction of dihydroquinoline to quinoline. The study mainly focused on how to modulate the electronic effects to achieve an ideal ratiometric detection of •OH, as well as solving the inherent problem of hydrophilicity of the probe, so that it was more conducive to monitoring •OH in living organisms. The screened-out probe NanoDCQ-3 exhibited an exceptional ratiometric sensing capability, better biocompatibility, good cellular uptake, and appropriate in vivo retention, which has been reliably used for detecting exogenous •OH concentration fluctuation in living cells and zebrafish models. More importantly, NanoDCQ-3 facilitated visualization of •OH and evaluation of drug treatment efficacy in diabetic mice. These findings afforded a promising strategy for designing ratiometric fluorescent probes for •OH. NanoDCQ-3 emerged as a valuable tool for the detection of •OH in vivo and held potential for drug screening for inflammation-related diseases.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus Experimental , Animales , Ratones , Radical Hidroxilo , Pez Cebra , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Especies Reactivas de Oxígeno , Colorantes Fluorescentes
9.
Bioorg Med Chem Lett ; 97: 129563, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008336

RESUMEN

Biothiols play a crucial role in maintaining redox balance in organisms, and anomalous levels of biothiols in human organs can lead to various sicknesses and biological disorders. This work developed a novel sensitive fluorescent probe TZ-NBD with double channels for highly efficient recognition of biothiols. TZ-NBD adopts 4-Chloro-7-nitrobenzofurazan (NBD-Cl) as the recognition moiety with simultaneous fluorescence output. By incorporating NBD-Cl with the other fluorophore, benzothiazole dihydrocyclopentachromene derivative (TZ-OH), the dual-channel sensitive fluorescence probe TZ-NBD was built. The existence of Cys/ Hcy could significantly trigger both the green and red fluorescent emissions, which were derived from fluorophores amine-substituted NBD and TZ-OH, respectively. While exposing to GSH, only the red-channel fluorescence signal could be detected, indicating the release of TZ-OH. The phenomena was mainly attributed to the fact that sulfur-substituted NBD has nearly no fluorescence, while amine-substituted NBD shows obvious green fluorescence. In our study, TZ-NBD exhibited dual-channel sensitivity, fast response, and excellent selectivity to biothiols in vitro. Moreover, TZ-NBD was favorably utilized for recognition of biothiols in vivo. We believe that the sensitive fluorescence probe with double channels can afford an alternate approach for monitoring biothiols in organisms and would be useful for studying diseases associated with biothiols.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Humanos , Glutatión , Espectrometría de Fluorescencia , Aminas , Homocisteína
10.
ACS Appl Bio Mater ; 6(12): 5828-5835, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38055907

RESUMEN

Benefiting from high spatiotemporal resolution, deep tissue penetration, and excellent sensitivity, fluorescence imaging technology has been widely applied in cancer diagnosis and treatment. In recent years, a large number of fluorescent probes for monitoring the levels of endogenous biothiols have been reported, which have significant implications for cancer diagnosis and treatment. However, most probes still suffer from poor biological compatibility and easy attachment by the environment. This work presents the development of a water-soluble dual-channel fluorescent probe, named MAL-NBD, for sensitively detecting biothiols. Nonfluorescent MAL-NBD is transformed into fluorescent groups MAL and NBD-SR/NR through nucleophilic substitution by biologically active thiols, producing dual-channel fluorescence signals for precise detection of biologically active thiols. Taking advantage of the excellent biocompatibility and low biotoxicity, MAL-NBD is successfully used for imaging HeLa cancer cells and zebrafish larvae, promoting its potential application for the precise detection of biological thiols involved in physiological and pathological processes.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Humanos , Animales , Compuestos de Sulfhidrilo , Células HeLa , Imagen Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA