Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Rep ; 14(1): 10531, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719880

This study aims to explore the optimal driving speed for ground vibration in suburban railway underground sections. We focused on the ground surface of suburban railway underground sections and developed a 3D finite element dynamic coupling model for the tunnel-soil system. Subsequently, considering factors such as train speed and passenger load, we analyzed the propagation characteristics of ground vibration responses in urban railway underground sections. The research results indicate a significant amplification phenomenon in the peak power spectrum of measurement points near the tunnels in underground sections. The high-frequency components of the power spectrum between measurement points are noticeably higher between the two tunnels. Furthermore, as the train speed increases, this amplification phenomenon becomes more pronounced, and the power spectrum of each measurement point mainly concentrates on several frequency bands, with the amplitude of the power spectrum near the prominent frequencies also increasing. However, when the train speed is between 100 and 120 km/h, the impact on the amplitude of the power spectrum at measurement points above the running tunnel is minimal. Additionally, the amplitude of the middle-to-high frequency components in the power spectrum increases with the increase in passenger numbers. The impact on the peak acceleration amplitude at each measurement point is minimal when the train speed is 80 km/h or below. However, once the train speed exceeds 80 km/h, the peak acceleration amplitude above the running tunnel rapidly increases, reaching its maximum value at 113 km/h, and then gradually decreasing.

2.
Angew Chem Int Ed Engl ; 63(19): e202400999, 2024 May 06.
Article En | MEDLINE | ID: mdl-38489230

Photocatalytic oxygen reduction to produce hydrogen peroxide (H2O2) is a promising route to providing oxidants for various industrial applications. However, the lack of well-designed photocatalysts for efficient overall H2O2 production in pure water has impeded ongoing research and practical thrusts. Here we present a cyanide-based covalent organic framework (TBTN-COFs) combining 2,4,6-trimethylbenzene-1,3,5-tricarbonitrile (TBTN) and benzotrithiophene-2,5,8-tricarbaldehyde (BTT) building blocks with water-affinity and charge-separation. The ultrafast intramolecular electron transfer (<500 fs) and prolonged excited state lifetime (748 ps) can be realized by TBTN-COF, resulting in a hole accumulated BTT and electron-rich TBTN building block. Under one sun, the 11013 µmol h-1 g-1 yield rate of H2O2 can be achieved without any sacrificial agent, outperforming most previous reports. Furthermore, the DFT calculation and in situ DRIFTS spectrums suggesting a Yeager-type absorption of *O2⋅- intermediate in the cyanide active site, which prohibits the formation of superoxide radical and revealing a favored H2O2 production pathway.

...