Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Environ Sci Ecotechnol ; 20: 100402, 2024 Jul.
Article En | MEDLINE | ID: mdl-38585199

Water quality in surface bodies remains a pressing issue worldwide. While some regions have rich water quality data, less attention is given to areas that lack sufficient data. Therefore, it is crucial to explore novel ways of managing source-oriented surface water pollution in scenarios with infrequent data collection such as weekly or monthly. Here we showed sparse-dataset-based prediction of water pollution using machine learning. We investigated the efficacy of a traditional Recurrent Neural Network alongside three Long Short-Term Memory (LSTM) models, integrated with the Load Estimator (LOADEST). The research was conducted at a river-lake confluence, an area with intricate hydrological patterns. We found that the Self-Attentive LSTM (SA-LSTM) model outperformed the other three machine learning models in predicting water quality, achieving Nash-Sutcliffe Efficiency (NSE) scores of 0.71 for CODMn and 0.57 for NH3N when utilizing LOADEST-augmented water quality data (referred to as the SA-LSTM-LOADEST model). The SA-LSTM-LOADEST model improved upon the standalone SA-LSTM model by reducing the Root Mean Square Error (RMSE) by 24.6% for CODMn and 21.3% for NH3N. Furthermore, the model maintained its predictive accuracy when data collection intervals were extended from weekly to monthly. Additionally, the SA-LSTM-LOADEST model demonstrated the capability to forecast pollution loads up to ten days in advance. This study shows promise for improving water quality modeling in regions with limited monitoring capabilities.

2.
Sci Total Environ ; 926: 172130, 2024 May 20.
Article En | MEDLINE | ID: mdl-38569962

Climate change has a discernible influence on rainfall patterns, thus potentially affecting the intricate dynamics of soil respiration (Rs) and soil carbon storage. However, we still lack a profound understanding of the determinants of Rs response to rainfall events. Here, utilizing a comprehensive 10-year dataset (2004-2013), we explored the direction and magnitude of Rs response to rainfall events and the underlying determinants in a temperate forest. Based on the identified 368 rainfall events over the study period, we demonstrate that rainfall suppresses Rs when the soil moisture is optimal and moist in the growing season, whereas its effect on Rs during the non-growing season is minimal. Notably, antecedent soil moisture, rather than rainfall amount, shows a substantial impact on Rs during the growing season (coefficient of determination (R2) = 0.37 for antecedent soil moisture, and R2 < 0.01 for rainfall amount). Incorporating antecedent soil moisture significantly enhances the explanatory power (R2) from 0.09 to 0.45 regarding the relative changes in Rs following rainfall events. Our results highlight the environmental dependency of Rs response to rainfall events and suggest that incorporating the role of antecedent soil moisture could enhance predictability and reduce uncertainty in ecosystem modeling.

3.
Chin J Integr Med ; 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38676827

OBJECTIVE: To investigate the therapeutic efficacy of cinnamaldehyde (CA) on systemic Candida albicans infection in mice and to provide supportive data for the development of novel antifungal drugs. METHODS: Ninety BALB/c mice were randomly divided into 3 groups according to a random number table: CA treatment group, fluconazole (positive control) group, and Tween saline (negative control) group, with 30 mice in each group. Initially, all groups of mice received consecutive intraperitoneal injections of cyclophosphamide at 200 mg/kg for 2 days, followed by intraperitoneal injection of 0.25 mL C. albicans fungal suspension (concentration of 1.0 × 107 CFU/mL) on the 4th day, to establish an immunosuppressed systemic Candida albicans infection animal model. Subsequently, the mice were orally administered CA, fluconazole and Tween saline, at 240, 240 mg/kg and 0.25 mL/kg respectively for 14 days. After a 48-h discontinuation of treatment, the liver, small intestine, and kidney tissues of mice were collected for fungal direct microscopic examination, culture, and histopathological examination. Additionally, renal tissues from each group of mice were collected for (1,3)- ß -D-glucan detection. The survival status of mice in all groups was monitored for 14 days of drug administration. RESULTS: The CA group exhibited a fungal clearance rate of C. albicans above 86.7% (26/30), significantly higher than the fluconazole group (60.0%, 18/30, P<0.01) and the Tween saline group (30.0%, 9/30, P<0.01). Furthermore, histopathological examination in the CA group revealed the disappearance of inflammatory cells and near-normal restoration of tissue structure. The (1,3)-ß-D-glucan detection value in the CA group (860.55 ± 126.73 pg/mL) was significantly lower than that in the fluconazole group (1985.13 ± 203.56 pg/mL, P<0.01) and the Tween saline group (5910.20 ± 320.56 pg/mL, P<0.01). The mouse survival rate reached 90.0% (27/30), higher than the fluconazole group (60.0%, 18/30) and the Tween saline group (30.0%, 9/30), with a significant difference between the two groups (both P<0.01). CONCLUSIONS: CA treatment exhibited significant therapeutic efficacy in mice with systemic C. albicans infection. Therefore, CA holds potential as a novel antifungal agent for targeted treatment of C. albicans infection.

4.
Nat Commun ; 15(1): 1178, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38331994

Unravelling biosphere feedback mechanisms is crucial for predicting the impacts of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on native soil organic carbon (SOC) decomposition, is a key feedback mechanism that could release large amounts of soil C into the atmosphere. However, the impacts of climate warming on soil priming remain elusive. Here, we show that experimental warming accelerates soil priming by 12.7% in a temperate grassland. Warming alters bacterial communities, with 38% of unique active phylotypes detected under warming. The functional genes essential for soil C decomposition are also stimulated, which could be linked to priming effects. We incorporate lab-derived information into an ecosystem model showing that model parameter uncertainty can be reduced by 32-37%. Model simulations from 2010 to 2016 indicate an increase in soil C decomposition under warming, with a 9.1% rise in priming-induced CO2 emissions. If our findings can be generalized to other ecosystems over an extended period of time, soil priming could play an important role in terrestrial C cycle feedbacks and climate change.


Ecosystem , Grassland , Soil , Carbon , Climate Change
5.
ISME Commun ; 3(1): 121, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37985704

Enzyme allocation (or synthesis) is a crucial microbial trait that mediates soil biogeochemical cycles and their responses to climate change. However, few microbial ecological models address this trait, particularly concerning multiple enzyme functional groups that regulate complex biogeochemical processes. Here, we aim to fill this gap by developing a COmpetitive Dynamic Enzyme ALlocation (CODEAL) scheme for six enzyme groups that act as indicators of inorganic nitrogen (N) transformations in the Microbial-ENzyme Decomposition (MEND) model. This allocation scheme employs time-variant allocation coefficients for each enzyme group, fostering mutual competition among the multiple groups. We show that the principle of enzyme cost minimization is achieved by using the substrate's saturation level as the factor for enzyme allocation, resulting in an enzyme-efficient pathway with minimal enzyme cost per unit metabolic flux. It suggests that the relative substrate availability affects the trade-off between enzyme production and metabolic flux. Our research has the potential to give insights into the nuanced dynamics of the N cycle and inspire the evolving landscape of enzyme-mediated biogeochemical processes in microbial ecological modeling, which is gaining increasing attention.

6.
Sci Total Environ ; 889: 164199, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37207772

There is a broad consensus that riparian buffers provide environmental benefits and increase resilience to climate change. In this study, we examined the potential benefits of multi-zone riparian buffers with outer layers planted in perennial crops (i.e., partially harvested buffers). This was accomplished by developing a simplified regional modeling tool, BioVEST, which was applied in the Mid-Atlantic region of the USA. Our analysis revealed that a substantial portion of variable costs to produce biomass for energy can potentially be offset by values provided by ecosystem services from partially harvested riparian buffers. Ecosystem services were monetized and found to represent a substantial fraction (median = ~42%) of variable crop production cost. Simulated water-quality improvements and carbon benefits generally occurred where buffer area was available, but hotspots occurred in different watersheds, suggesting potential trade-offs in decisions about buffer locations. A portion of buffers could be eligible for ecosystem service payments under US government incentive programs. Partially harvested buffers could represent a sustainable and climate-resilient part of multi-functional agricultural landscapes, and one that could become economically viable if farmers are able to reap the value of providing ecosystem services and if logistical challenges are resolved. Our results suggest that payments for ecosystem services can close the gap between what biorefineries are willing to pay and what landowners are willing to accept to grow and harvest perennials along streams.


Agriculture , Ecosystem , Biomass , Crops, Agricultural , Crop Production , Rivers
7.
Nat Commun ; 14(1): 2171, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-37061518

Knowledge about global patterns of the decomposition kinetics of distinct soil organic matter (SOM) pools is crucial to robust estimates of land-atmosphere carbon fluxes under climate change. However, the current Earth system models often adopt globally-consistent reference SOM decomposition rates (kref), ignoring effects from edaphic-climate heterogeneity. Here, we compile a comprehensive set of edaphic-climatic and SOM decomposition data from published incubation experiments and employ machine-learning techniques to develop models capable of predicting the expected sizes and kref of multiple SOM pools (fast, slow, and passive). We show that soil texture dominates the turnover of the fast pools, whereas pH predominantly regulates passive SOM decomposition. This suggests that pH-sensitive bacterial decomposers might have larger effects on stable SOM decomposition than previously believed. Using these predictive models, we provide a 1-km resolution global-scale dataset of the sizes and kref of these SOM pools, which may improve global biogeochemical model parameterization and predictions.

8.
Front Microbiol ; 14: 1105723, 2023.
Article En | MEDLINE | ID: mdl-36876107

Soil microorganisms are critical biological indicators for evaluating soil health and play a vital role in carbon (C)-climate feedback. In recent years, the accuracy of models in terms of predicting soil C pools has been improved by considering the involvement of microbes in the decomposition process in ecosystem models, but the parameter values of these models have been assumed by researchers without combining observed data with the models and without calibrating the microbial decomposition models. Here, we conducted an observational experiment from April 2021 to July 2022 in the Ziwuling Mountains, Loess Plateau, China, to explore the main influencing factors of soil respiration (RS) and determine which parameters can be incorporated into microbial decomposition models. The results showed that the RS rate is significantly correlated with soil temperature (TS) and moisture (MS), indicating that TS increases soil C loss. We attributed the non-significant correlation between RS and soil microbial biomass carbon (MBC) to variations in microbial use efficiency, which mitigated ecosystem C loss by reducing the ability of microorganisms to decompose organic resources at high temperatures. The structural equation modeling (SEM) results demonstrated that TS, microbial biomass, and enzyme activity are crucial factors affecting soil microbial activity. Our study revealed the relations between TS, microbial biomass, enzyme activity, and RS, which had important scientific implications for constructing microbial decomposition models that predict soil microbial activity under climate change in the future. To better understand the relationship between soil dynamics and C emissions, it will be necessary to incorporate climate data as well as RS and microbial parameters into microbial decomposition models, which will be important for soil conservation and reducing soil C loss in the Loess Plateau.

9.
BMC Complement Med Ther ; 22(1): 32, 2022 Jan 31.
Article En | MEDLINE | ID: mdl-35101002

BACKGROUND: The incidence rate of invasive candidiasis is high, its treatment is difficult, and the prognosis is poor. In this study, an immunosuppressive mouse model of invasive Candida albicans (C. albicans) infection was constructed to observe the effects of cinnamaldehyde (CA) on the C. albicans cell wall structure and cell wall (1,3)-ß-D-glucan contents. This study provides a theoretical basis for CA treatment to target invasive C. albicans infection. METHODS: Immunosuppressed mice with invasive C. albicans infection were given an oral dosage of CA (240 mg.kg- 1.d- 1) for 14 days. Then, mouse lung tissue samples were collected for detection of the levels of (1,3)-ß-D-glucan and transmission electron microscopy observations, using fluconazole as a positive control and 2% Tween 80 saline as a negative control. RESULTS: The immunosuppressive mouse model of invasive C. albicans infection was successfully established. The levels of (1,3)-ß-D-glucan in the CA treatment group, fluconazole positive control group, invasive C. albicans infection immunosuppressive mouse model group, and 2% Tween 80 normal saline control group were 86.55 ± 126.73 pg/ml, 1985.13 ± 203.56 pg/ml, 5930.57 ± 398.67 pg/ml and 83.36 ± 26.35 pg/ml, respectively. Statistically, the CA treatment group, fluconazole positive control group and invasive C. albicans infection immunosuppressive mouse model group were compared with each other (P < 0.01) and compared with the 2% Tween 80 saline group (P < 0.01), showing that the differences were very significant. Comparison of the CA treatment group with the fluconazole positive control group (P < 0.05) displayed a difference as well. Electron microscopy showed that CA destroyed the cell wall of C. albicans, where the outer layer of the cell wall fell off and became thinner and the nuclei and organelles dissolved, but the cell membrane remained clear and intact. CONCLUSION: CA destroys the cell wall structure of C. albicans by interfering with the synthesis of (1,3)-ß-D-glucan to kill C. albicans. However, CA does not affect the cell membrane. This study provides a theoretical basis for CA treatment to target invasive C. albicans infection.


Acrolein/analogs & derivatives , Candidiasis/drug therapy , Glucans/metabolism , Acrolein/pharmacology , Animals , Candida albicans , Cell Wall/drug effects , Disease Models, Animal , Immunocompromised Host , Male , Mice , Mice, Inbred BALB C
10.
Sci Total Environ ; 802: 149831, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-34454152

Quantifying the climatic and anthropogenic effects on hydrological processes has received considerable attention. However, diverse conclusions could be drawn when different models and forcing datasets are used. This is particularly uncertain and challenging in poorly gauged arid regions. Here we aim to tackle this issue in the poorly gauged Xiangride River Basin within the Qaidam Basin, one of the three prominent inland basins in China. We applied two distinct models (Budyko Mezentsev-Choudhurdy-Yang and process-based SWAT) to a poorly-gauged inland basin in West China. The model simulations were driven by four precipitation products including Tropical Rainfall Measuring Mission (TRMM) 3B42 V7, Global Precipitation Measurement (GPM) IMERG V6, Multi-Source Weighted-Ensemble Precipitation (MSWEP) and China Meteorological Assimilation Driving Datasets (CMADS). Our results indicate that MSWEP performed best (NSE = 0.64 vs. 0.36-0.59 for other datasets) in the baseline period (2009-2012), whereas CMADS was more accurate during the impacted period (2013-2016); CMADS and GPM might underestimate the precipitation in the baseline and impacted period, respectively. Hydrological processes during the impacted period are presumed to be influenced by climate variation and/or human activities, compared to the relatively natural status in the baseline period. We conclude that runoff decline between the two periods was mainly affected by human activities (-66 to 94%), whereas the contribution of climate variation was more likely positive. A literature survey reveals that major anthropogenic effects in the study area includes reservoir, road construction and cropland expansion that could lead to runoff decrease. We recommend the use of process-based model (e.g., SWAT) in studies like this, as process-based models driven by high-quality remote-sensed or reanalysis climate datasets, better represents the spatiotemporal hydrological change under altered conditions, whereas the steady-state assumption of soil water for the Budyko model may not be fully satisfied during a short period.


Hydrology , Rivers , China , Human Activities , Humans , Water Movements
11.
ISME J ; 16(1): 10-25, 2022 01.
Article En | MEDLINE | ID: mdl-34211103

Switchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Additionally, few studies have reported the effects of switchgrass cultivation on marginal lands that have low soil nutrient quality (N/P) or in areas that have experienced high rates of soil erosion. Here, we report a comparative analyses of soil greenhouse gases (GHG), soil chemistry, and microbial communities in two contrasting soil types (with or without switchgrass) over 17 months (1428 soil samples). These soils are highly eroded, 'Dust Bowl' remnant field sites in southern Oklahoma, USA. Our results revealed that soil C significantly increased at the sandy-loam (SL) site, but not at the clay-loam (CL) site. Significantly higher CO2 flux was observed from the CL switchgrass site, along with reduced microbial diversity (both alpha and beta). Strikingly, methane (CH4) consumption was significantly reduced by an estimated 39 and 47% at the SL and CL switchgrass sites, respectively. Together, our results suggest that soil C stocks and GHG fluxes are distinctly different at highly degraded sites when switchgrass has been cultivated, implying that carbon balance considerations should be accounted for to fully evaluate the sustainability of deep-rooted perennial grass cultivation in marginal lands.


Panicum , Soil , Carbon , Carbon Dioxide/analysis , Methane , Nitrous Oxide/analysis , Soil/chemistry
12.
Glob Chang Biol ; 28(5): 1935-1950, 2022 03.
Article En | MEDLINE | ID: mdl-34905647

Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme-mediated soil inorganic N processes in the Microbial-ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C-N fluxes, microbial C:N ratios, and functional gene abundances from a 12-year CO2  × N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO2 fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C-N-associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO2 concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem-level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology.


Ecosystem , Soil , Carbon , Nitrogen/analysis , Soil/chemistry , Soil Microbiology
13.
Glob Chang Biol ; 27(23): 6166-6180, 2021 Dec.
Article En | MEDLINE | ID: mdl-34464997

Oxygen (O2 ) limitation contributes to persistence of large carbon (C) stocks in saturated soils. However, many soils experience spatiotemporal O2  fluctuations impacted by climate and land-use change, and O2 -mediated climate feedbacks from soil greenhouse gas emissions remain poorly constrained. Current theory and models posit that anoxia uniformly suppresses carbon (C) decomposition. Here we show that periodic anoxia may sustain or even stimulate decomposition over weeks to months in two disparate soils by increasing turnover and/or size of fast-cycling C pools relative to static oxic conditions, and by sustaining decomposition of reduced organic molecules. Cumulative C losses did not decrease consistently as cumulative O2 exposure decreased. After >1 year, soils anoxic for 75% of the time had similar C losses as the oxic control but nearly threefold greater climate impact on a CO2 -equivalent basis (20-year timescale) due to high methane (CH4 ) emission. A mechanistic model incorporating current theory closely reproduced oxic control results but systematically underestimated C losses under O2  fluctuations. Using a model-experiment integration (ModEx) approach, we found that models were improved by varying microbial maintenance respiration and the fraction of CH4 production in total C mineralization as a function of O2 availability. Consistent with thermodynamic expectations, the calibrated models predicted lower microbial C-use efficiency with increasing anoxic duration in one soil; in the other soil, dynamic organo-mineral interactions implied by our empirical data but not represented in the model may have obscured this relationship. In both soils, the updated model was better able to capture transient spikes in C mineralization that occurred following anoxic-oxic transitions, where decomposition from the fluctuating-O2 treatments greatly exceeded the control. Overall, our data-model comparison indicates that incorporating emergent biogeochemical properties of soil O2 variability will be critical for effectively modeling C-climate feedbacks in humid ecosystems.


Carbon , Soil , Carbon Dioxide/analysis , Ecosystem , Methane , Oxygen
14.
Chin J Integr Med ; 27(4): 286-290, 2021 Apr.
Article En | MEDLINE | ID: mdl-32415645

OBJECTIVE: To evaluate the effect and safety of cinnamaldehyde on immunosuppressed mice with invasive pulmonary candidiasis. METHODS: An immunosuppressed BALB/c mouse model was established by intraperitoneal administration of cyclophosphamide (200 mg/kg) once daily for 2 days. The immunosuppressed mouse with invasive pulmonary candidiasis model was further established by nasal perfusion of Candida albicans suspension. In the cinnamaldehyde treatment group, immunosuppressed mice with invasive pulmonary candidiasis were orally given cinnamaldehyde 240 mg/(kg·d) for 14 consecutive days. Fluconazole and 0.9% saline were used as the positive and negative controls, respectively. The mice in the cinnamaldehyde safety evaluation group were orally administered cinnamaldehyde 480 mg/(kg·d) for 42 days to observe the safety of the drug. Microscopic identification, fungal culture, histopathological examination, and (1,3)-beta-D-glucans detection were conducted to analyze the effect of cinnamaldehyde on C. albicans. RESULTS: The fungal clearance rate in the cinnamaldehyde treatment group was higher than that in the fluconazole control group (80.00% vs. 56.67%, P<0.05). The level of (1,3)-ß-D-glucan in the cinnamaldehyde treatment group was lower than that in the fluconazole positive control group (1160.62 ±89.65 pg/mL vs. 4285.87 ± 215.62 pg/mL, P<0.05). The survival rate of mice in the cinnamaldehyde safety evaluation group was 100%, and no significant pathological changes of kidney, lung and liver were observed. CONCLUSIONS: Cinnamaldehyde was effective and safe in treating immunosuppressed BALB/c mice with invasive pulmonary candidiasis. It would be a potentially novel drug for anti-candidiasis infection.


Candidiasis , Acrolein/analogs & derivatives , Animals , Antifungal Agents/therapeutic use , Candida albicans , Candidiasis/drug therapy , Lung , Mice , Mice, Inbred BALB C
15.
Proc Natl Acad Sci U S A ; 117(52): 33317-33324, 2020 12 29.
Article En | MEDLINE | ID: mdl-33318221

Whether and how CO2 and nitrogen (N) availability interact to influence carbon (C) cycling processes such as soil respiration remains a question of considerable uncertainty in projecting future C-climate feedbacks, which are strongly influenced by multiple global change drivers, including elevated atmospheric CO2 concentrations (eCO2) and increased N deposition. However, because decades of research on the responses of ecosystems to eCO2 and N enrichment have been done largely independently, their interactive effects on soil respiratory CO2 efflux remain unresolved. Here, we show that in a multifactor free-air CO2 enrichment experiment, BioCON (Biodiversity, CO2, and N deposition) in Minnesota, the positive response of soil respiration to eCO2 gradually strengthened at ambient (low) N supply but not enriched (high) N supply for the 12-y experimental period from 1998 to 2009. In contrast to earlier years, eCO2 stimulated soil respiration twice as much at low than at high N supply from 2006 to 2009. In parallel, microbial C degradation genes were significantly boosted by eCO2 at low but not high N supply. Incorporating those functional genes into a coupled C-N ecosystem model reduced model parameter uncertainty and improved the projections of the effects of different CO2 and N levels on soil respiration. If our observed results generalize to other ecosystems, they imply widely positive effects of eCO2 on soil respiration even in infertile systems.


Carbon Dioxide/pharmacology , Grassland , Nitrogen/pharmacology , Soil/chemistry , Aerobiosis , Computer Simulation , Soil Microbiology
16.
Nat Commun ; 11(1): 5864, 2020 11 17.
Article En | MEDLINE | ID: mdl-33203846

Global soil organic carbon (SOC) stocks may decline with a warmer climate. However, model projections of changes in SOC due to climate warming depend on microbially-driven processes that are usually parameterized based on laboratory incubations. To assess how lab-scale incubation datasets inform model projections over decades, we optimized five microbially-relevant parameters in the Microbial-ENzyme Decomposition (MEND) model using 16 short-term glucose (6-day), 16 short-term cellulose (30-day) and 16 long-term cellulose (729-day) incubation datasets with soils from forests and grasslands across contrasting soil types. Our analysis identified consistently higher parameter estimates given the short-term versus long-term datasets. Implementing the short-term and long-term parameters, respectively, resulted in SOC loss (-8.2 ± 5.1% or -3.9 ± 2.8%), and minor SOC gain (1.8 ± 1.0%) in response to 5 °C warming, while only the latter is consistent with a meta-analysis of 149 field warming observations (1.6 ± 4.0%). Comparing multiple subsets of cellulose incubations (i.e., 6, 30, 90, 180, 360, 480 and 729-day) revealed comparable projections to the observed long-term SOC changes under warming only on 480- and 729-day. Integrating multi-year datasets of soil incubations (e.g., > 1.5 years) with microbial models can thus achieve more reasonable parameterization of key microbial processes and subsequently boost the accuracy and confidence of long-term SOC projections.


Carbon Sequestration , Carbon , Models, Biological , Soil/chemistry , Carbon/metabolism , Forests , Iowa , Ohio , Soil Microbiology , Tennessee
17.
Nat Commun ; 11(1): 4897, 2020 09 29.
Article En | MEDLINE | ID: mdl-32994415

Soil microbial respiration is an important source of uncertainty in projecting future climate and carbon (C) cycle feedbacks. However, its feedbacks to climate warming and underlying microbial mechanisms are still poorly understood. Here we show that the temperature sensitivity of soil microbial respiration (Q10) in a temperate grassland ecosystem persistently decreases by 12.0 ± 3.7% across 7 years of warming. Also, the shifts of microbial communities play critical roles in regulating thermal adaptation of soil respiration. Incorporating microbial functional gene abundance data into a microbially-enabled ecosystem model significantly improves the modeling performance of soil microbial respiration by 5-19%, and reduces model parametric uncertainty by 55-71%. In addition, modeling analyses show that the microbial thermal adaptation can lead to considerably less heterotrophic respiration (11.6 ± 7.5%), and hence less soil C loss. If such microbially mediated dampening effects occur generally across different spatial and temporal scales, the potential positive feedback of soil microbial respiration in response to climate warming may be less than previously predicted.


Carbon/analysis , Metagenome/genetics , Microbiota/physiology , Soil Microbiology , Soil/chemistry , Acclimatization/genetics , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Carbon/metabolism , Carbon Cycle , Cellulose/metabolism , DNA, Environmental/genetics , DNA, Environmental/isolation & purification , Fungi/genetics , Fungi/isolation & purification , Fungi/metabolism , Global Warming , Grassland , Hot Temperature/adverse effects , Metagenomics , Models, Genetic , Plant Roots/chemistry , Poaceae/chemistry
18.
Water Res ; 185: 116221, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32731076

River algal blooms have become a challenging environmental problem worldwide due to strong interference of human activities and megaprojects (e.g., big dams and large-scale water transfer projects). Previous studies on algal blooms were mainly focused on relatively static water bodies (i.e., lakes and reservoirs), but less on the large rivers. As the largest tributary of the Yangtze River of China and the main freshwater source of the South-to-North Water Diversion Project (SNWDP), the Han River has experienced frequent algal blooms in recent decades. Here we investigated the algal blooms during a decade (2003-2014) in the Han River by two gradient boosting machine (GBM) models with k-fold cross validation, which used explanatory variables from current 10-day (GBMc model) or previous 10-day period (GBMp model). Our results advocate the use of GBMp due to its higher accuracy (median Kappa = 0.9) and practical predictability (using antecedent observations) compared to GBMc. We also revealed that the algal blooms in the Han River were significantly modulated by antecedent water levels in the Han River and the Yangtze River and water level variation in the Han River, whereas the nutrient concentrations in the Han River were usually above thresholds and not limiting algal blooms. This machine-learning-based study potentially provides scientific guidance for preemptive warning and risk management of river algal blooms through comprehensive regulation of water levels during the dry season by making use of water conservancy measures in large rivers.


Environmental Monitoring , Rivers , China , Eutrophication , Humans , Lakes
19.
Microbiome ; 8(1): 84, 2020 06 05.
Article En | MEDLINE | ID: mdl-32503635

BACKGROUND: In a warmer world, microbial decomposition of previously frozen organic carbon (C) is one of the most likely positive climate feedbacks of permafrost regions to the atmosphere. However, mechanistic understanding of microbial mediation on chemically recalcitrant C instability is limited; thus, it is crucial to identify and evaluate active decomposers of chemically recalcitrant C, which is essential for predicting C-cycle feedbacks and their relative strength of influence on climate change. Using stable isotope probing of the active layer of Arctic tundra soils after depleting soil labile C through a 975-day laboratory incubation, the identity of microbial decomposers of lignin and, their responses to warming were revealed. RESULTS: The ß-Proteobacteria genus Burkholderia accounted for 95.1% of total abundance of potential lignin decomposers. Consistently, Burkholderia isolated from our tundra soils could grow with lignin as the sole C source. A 2.2 °C increase of warming considerably increased total abundance and functional capacities of all potential lignin decomposers. In addition to Burkholderia, α-Proteobacteria capable of lignin decomposition (e.g. Bradyrhizobium and Methylobacterium genera) were stimulated by warming by 82-fold. Those community changes collectively doubled the priming effect, i.e., decomposition of existing C after fresh C input to soil. Consequently, warming aggravates soil C instability, as verified by microbially enabled climate-C modeling. CONCLUSIONS: Our findings are alarming, which demonstrate that accelerated C decomposition under warming conditions will make tundra soils a larger biospheric C source than anticipated. Video Abstract.


Lignin , Proteobacteria , Soil Microbiology , Alaska , Burkholderia/metabolism , Climate Change , Hot Temperature , Lignin/metabolism , Permafrost , Proteobacteria/metabolism , Soil/chemistry , Tundra
20.
PLoS One ; 15(3): e0230688, 2020.
Article En | MEDLINE | ID: mdl-32226037

Nitrogen (N) fertilization affects bioenergy crop growth and productivity and consequently carbon (C) and N contents in soil, it however remains unclear whether N fertilization and crop type individually or interactively influence soil organic carbon (SOC) and total N (TN). In a three-year long fertilization experiment in switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.) croplands in Middle Tennessee USA, soil samples (0-15cm) were collected in plots with no N input (NN), low N input (LN: 84 kg N ha-1 yr-1 in urea) and high N input (HN: 168 kg N ha-1 yr-1 in urea). Besides SOC and TN, the aboveground plant biomass was also quantified. In addition to a summary of published root morphology data based on a separated mesocosm experiment, the root leachable dissolved organic matter (DOM) of both crops was also measured using archived samples. Results showed no significant interaction of N fertilization and crop type on SOC, TN or plant aboveground biomass (ABG). Relative to NN, HN (not LN) significantly increased SOC and TN in both crops. Though SG showed a 15-68% significantly higher ABG than GG, GG showed a 9.3-12% significantly higher SOC and TN than SG. The positive linear relationships of SOC or TN with ABG were identified for SG. However, GG showed structurally more complex and less readily decomposed root DOM, a larger root volume, total root length and surface area than SG. Collectively, these suggested that intensive N fertilization could increase C and N stocks in bioenergy cropland soils but these effects may be more likely mediated by the aboveground biomass in SG and root chemistry and morphology in GG. Future studies are expected to examine the root characteristics in different bioenergy croplands under the field fertilization experiment.


Carbon/analysis , Crops, Agricultural/growth & development , Fertilizers/analysis , Nitrogen/analysis , Soil/chemistry , Biofuels , Biomass , Tennessee
...