Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-19, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115538

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the metabolic diseases with the highest morbidity rates in the world. Probiotics have positive health impacts on human health and a considerable amount of research has demonstrated their beneficial effects in treating T2DM. However, probiotic intervention in T2DM has complex mechanisms because the pathogenesis of T2DM is complex. This review summarized the mechanisms of probiotic intervention in diabetes from the perspective of diabetes pathogenesis. First, the objectives of probiotic intervention in diabetes aimed at the intestinal tract reparative effects, pancreatic function, host metabolism and self-recovery were comprehensively reviewed. Next, we concluded the clinical application status of ingested probiotics in patients with T2DM, and an obvious imbalance exists between theoretical probiotic research and clinical applications. Finally, we summarized the emerging research on probiotic interventions in T2DM and analyzed the literature in this regard, including next-generation probiotics; suggestions for probiotics consumption with the aim of diabetic complications; as well as the association between novel mechanisms of diabetes remission with the potential for probiotic intervention. In conclusion, this review sheds light on the potential role of probiotics, from proposed mechanisms to prospects in relieving T2DM.

2.
J Sci Food Agric ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132987

RESUMEN

BACKGROUND: Phyllanthus emblica Linn. (PE) is rich in polyphenols, which can be categorized into free and bound phenolics (PEFP and PEBP). This study evaluated the inhibitory effect of PEFB and PEBP on α-amylase for the first time. The mechanism of the inhibition effect of PEFP and PEBP on α-amylase was investigated by enzyme inhibition kinetics, multispectral analysis, thermodynamics, and molecular docking. RESULTS: Free and bound phenolics inhibited α-amylase activity effectively in a mixed type of inhibition. Fluorescence quenching and thermodynamic analyses showed that the binding of PEFP and PEBP to α-amylase occurred through a static quenching process (Kq = 6.94 × 10¹² and 5.74 × 10¹² L mol-1 s-1), which was accompanied by a redshift (λem from 343 to 347 nm), leading to a change in the microenvironment. This process was found to be a spontaneous exothermic reaction (ΔG < 0). Circular dichroism (CD) analysis confirms that the secondary structure of α-amylase was altered, in particular a decrease in α-helixes and an increase in random coils. Molecular docking studies showed that PEFP and PEBP interacted with α-amylase through hydrogen bonding and hydrophobic interactions. CONCLUSION: The present study provides valuable insights into the mechanism of action of PEFP and PEBP on α-amylase, which will provide a theoretical basis for their possible use as novel natural α-amylase inhibitors. © 2024 Society of Chemical Industry.

3.
Foodborne Pathog Dis ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959170

RESUMEN

Effectively managing foodborne pathogens is imperative in food processing, where probiotics play a crucial role in pathogen control. This study focuses on the Lactiplantibacillus plantarum AR113 and its gene knockout strains, exploring their antimicrobial properties against Escherichia coli O157:H7 and Staphylococcus aureus. Antimicrobial assays revealed that the inhibitory effect of AR113 increases with its growth and the potential bacteriostatic substance is acidic. AR113Δldh, surpassed AR113Δ0273&2024, exhibited a complete absence of bacteriostatic properties, which indicates that lactic acid is more essential than acetic acid in the bacteriostatic effect of AR113. However, the exogenous acid validation test affirmed the equivalent superior bacteriostatic effect of lactic acid and acetic acid. Notably, AR113 has high lactate production and deletion of the ldh gene not only lacks lactate production but also affects acetic production. This underscores the ldh gene's pivotal role in the antimicrobial activity of AR113. In addition, among all the selected knockout strains, AR113ΔtagO and ΔccpA also had lower antimicrobial effects, suggesting the importance of tagO and ccpA genes of AR113 in pathogen control. This study contributes insights into the antimicrobial potential of AR113 and stands as the pioneering effort to use knockout strains for comprehensive bacteriostatic investigations.

4.
J Sci Food Agric ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984980

RESUMEN

BACKGROUND: Human serum albumin (HSA) is the most abundant protein in plasma, playing crucial roles in regulating osmotic pressure and maintaining protein homeostasis. It is widely applied in the clinical treatment of various diseases. HSA can be purified from plasma or produced using recombinant DNA technology. Due to the improved efficiency and reduced costs, a growing body of research has focused on enhancing albumin production through bacterial strain overexpression. However, there have been few studies on the effect of albumin on the characteristics of the overexpressing-strain itself, particularly stress resistance. In this study, we utilized Lactiplantibacillus plantarum (L. plantarum) AR113 as the expression host and successfully constructed the albumin overexpression strain AR113-pLLY01 through gene editing technology. The successful expression of albumin was achieved and subsequently compared with the wild-type strain AR113-pIB184. RESULTS: The results demonstrated that the survival rate of AR113-pLLY01 was also significantly better than that of AR113-pIB184 after lyophilization. In addition, AR113-pLLY01 exhibited a significantly better protective effect than AR113-pIB184 at pH 3, indicating that albumin possesses a certain tolerance to acidic stress. At bile salt concentrations higher than 0.03%, both strains showed limited growth, but at a concentration of 0.02%, AR113-pLLY01 had a significant protective effect. CONCLUSION: This study suggest that albumin can improve strain tolerance, which has significant implications for future applications. © 2024 Society of Chemical Industry.

6.
Nutrients ; 16(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892694

RESUMEN

Certain workplaces, like deep-sea voyages, subject workers to chronic psychological stress and circadian rhythm disorders due to confined environments and frequent shifts. In this study, participants lived in a strictly controlled confined environment, and we analyzed the effects of a confined environment on gut microbiota and metabolites. The results showed that living in confined environments can significantly alter both the gut microbiota and the gut metabolome, particularly affecting lipid metabolism pathways like glycerophospholipid metabolism. There was a significant reduction in the abundance of Faecalibacterium and Bacteroides, while Blautia, Bifidobacterium, and Collinsella showed significant increases. An association analysis revealed a strong correlation between changes in the gut microbiota and the metabolome. Four upregulated lipid metabolites may serve as biomarkers for damage induced by confined environments, and certain gut microbiota alterations, such as those involving Faecalibacterium and Bacteroides, could be potential psychobiotics or therapeutic targets for enhancing mental health in a confined environment.


Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Humanos , Microbioma Gastrointestinal/fisiología , Masculino , Adulto , Metabolismo de los Lípidos , Bacteroides/metabolismo , Femenino , Estrés Psicológico/microbiología , Estrés Psicológico/metabolismo , Heces/microbiología , Bacterias/metabolismo , Bacterias/clasificación
7.
Food Funct ; 15(14): 7416-7429, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38899520

RESUMEN

Lactobacillus plantarum AR495 is a widely used probiotic for the treatment of various digestive diseases, including irritable bowel syndrome (IBS). However, the specific mechanisms of L. plantarum AR495 in alleviating IBS remain unclear. Abnormal intestinal tryptophan metabolism can cause disordered immune responses, gastrointestinal peristalsis, digestion and sensation, which is closely related to IBS pathogenesis. The aim of this study is to explore the effects and mechanisms of L. plantarum AR495 in regulating tryptophan metabolism. Primarily, tryptophan and its related metabolites in patients with IBS and healthy people were analyzed, and an IBS rat model of acetic acid enema plus restraint stress was established to explore the alleviation pathway of L. plantarum AR495 in tryptophan metabolism. It was found that the 5-HT pathway was significantly changed, and the 5-HTP and 5-HT metabolites were significantly increased in the feces of patients with IBS, which were consistent with the results obtained for the IBS rat model. Maladjusted 5-HT could increase intestinal peristalsis and lead to an increase in the fecal water content and shapeless stool in rats. On the contrary, these two metabolites could be restored to normal levels via intragastric administration of L. plantarum AR495. Further study of the metabolic pathway showed that L. plantarum AR495 could effectively reduce the abundance of 5-HT by inhibiting the expression of enterochromaffin cells rather than promoting its decomposition. In addition, the results showed that L. plantarum AR495 did not affect the expression of SERT. To sum up, L. plantarum AR495 could restore the normal levels of 5-HT by inhibiting the abnormal proliferation of enterochromaffin cells and the excessive activation of TPH1 to inhibit the intestinal peristalsis in IBS. These findings provide insights for the use of probiotics in the treatment of IBS and other diarrheal diseases.


Asunto(s)
Colon , Síndrome del Colon Irritable , Lactobacillus plantarum , Probióticos , Ratas Sprague-Dawley , Serotonina , Triptófano , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/terapia , Síndrome del Colon Irritable/microbiología , Lactobacillus plantarum/metabolismo , Animales , Triptófano/metabolismo , Ratas , Probióticos/farmacología , Humanos , Masculino , Colon/metabolismo , Colon/microbiología , Serotonina/metabolismo , Femenino , Adulto , Persona de Mediana Edad , Modelos Animales de Enfermedad , Heces/microbiología , Adulto Joven
8.
JAMA Intern Med ; 184(8): 975-976, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38913351

RESUMEN

This case report describes a patient in their 70s with a lambda wave pattern on electrocardiography.


Asunto(s)
Electrocardiografía , Síncope , Humanos , Síncope/etiología , Síncope/diagnóstico , Masculino , Persona de Mediana Edad , Femenino
9.
Food Funct ; 15(11): 6028-6041, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38752307

RESUMEN

Phyllanthus emblica Linn. (PE) fresh fruits contain high concentrations of polyphenolics, of which free and bound phenolics are rich in biological activities. In this study, the inhibitory activity and mechanism of PEFP and PEBP on α-glucosidase (α-GLU) were investigated using spectroscopic techniques, kinetic analysis, and molecular docking. The results showed that 13 PEFP and 12 PEBP were identified by UPLC-MS/MS analysis, and Bis-HHDP-hexose and castalagin (vesgalagin) were found for the first time in PE fresh fruits. Kinetic analysis of enzyme inhibition showed that a mixture of free and bound phenolics inhibited α-GLU, and the effect of the conformational relationship of PEFP and PEBP with α-GLU on hypoglycemia was further explored by fluorescence quenching, circular dichroism (CD) spectroscopy, and molecular docking analysis. The findings demonstrated the inhibitory activity and mechanism of free and bound phenolics on α-GLU and provided a theoretical basis for PE polyphenolics as α-GLU inhibitors for hypoglycemia.


Asunto(s)
Frutas , Inhibidores de Glicósido Hidrolasas , Fenoles , Phyllanthus emblica , Extractos Vegetales , alfa-Glucosidasas , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo , Dicroismo Circular , Frutas/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Cinética , Simulación del Acoplamiento Molecular , Fenoles/química , Fenoles/farmacología , Phyllanthus emblica/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Espectrometría de Masas en Tándem
10.
Foods ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611312

RESUMEN

This study investigates the impact of urea and ß-GP on the growth of Streptococcus thermophilus S-3, a bacterium commonly used in industrial fermentation processes. Through a series of growth experiments, transcriptome, metabolome, and omics-based analyses, the research demonstrates that both urea and ß-GP can enhance the biomass of S. thermophilus, with urea showing a more significant effect. The optimal urea concentration for growth was determined to be 3 g/L in M17 medium. The study also highlights the metabolic pathways influenced by urea and ß-GP, particularly the galactose metabolism pathway, which is crucial for cell growth when lactose is the substrate. The integration of omics data into the genome-scale metabolic model of S. thermophilus, iCH502, allowed for a more accurate prediction of metabolic fluxes and growth rates. The study concludes that urea can serve as a viable substitute for ß-GP in the cultivation of S. thermophilus, offering potential cost and efficiency benefits in industrial fermentation processes. The findings are supported by validation experiments with 11 additional strains of S. thermophilus, which showed increased biomass in UM17 medium.

11.
ACS Synth Biol ; 13(4): 1365-1372, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38518262

RESUMEN

Lactococcus cremoris (homotypic synonym: Lactococcus lactis) is receiving increasing attention as a prominent vehicle for the delivery of live vaccines. This can hardly be achieved without developing tools for the genetic manipulation of L. cremoris, and the paucity of studies on L. cremoris endogenous promoters has attracted our attention. Here, we report the discovery and characterization of 29 candidate promoters identified from L. cremoris subsp. cremoris NZ9000 by RNA sequencing analysis. Furthermore, 18 possible constitutive promoters were obtained by RT-qPCR screening from these 29 candidate promoters. Then, these 18 promoters were cloned and characterized by a reporter gene, gusA, encoding ß-glucuronidase. Eventually, eight endogenous constitutive promoters of L. cremoris were obtained, which can be applied to genetic manipulation of lactic acid bacteria.


Asunto(s)
Lactococcus lactis , Lactococcus , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Regiones Promotoras Genéticas/genética , Genes Reporteros/genética , Expresión Génica
12.
Foods ; 13(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540885

RESUMEN

Ligilactobacillus salivarius (basonym: Lactobacillus salivarius, L. salivarius) is a type of lactic acid bacteria (LAB) commonly found in the oropharyngeal-gastrointestinal tract (OGT). It has gained significant attention due to its probiotic and functional properties as well as its various health-promoting roles. L. salivarius strains exhibit strong resistance and adhesion in the OGT along with outstanding antioxidant and antimicrobial properties. Additionally, numerous L. salivarius strains have the ability to produce bacteriocins with antagonistic activity. These probiotic characteristics of L. salivarius indicate its remarkable potential in promoting favorable effects on human health. It has also been observed that L. salivarius has a positive effect on the composition of intestinal microbiota, thereby improving the metabolic profiling of intestinal microbiota, promoting a healthy and balanced internal environment. In recent years, multi-omics technologies such as genomics, transcriptomics, proteomics and metabolomics have been employed to gain a deeper understanding of the roles and mechanisms of L. salivarius associated with its functional properties. This review aims to provide an overview of the probiotic characteristics of L. salivarius, containing its specific interactions with the host microflora, as well as insights from omics studies.

13.
J Sci Food Agric ; 104(3): 1458-1469, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37814322

RESUMEN

BACKGROUND: Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS: In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION: Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.


Asunto(s)
Redes y Vías Metabólicas , Streptococcus thermophilus , Animales , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fermentación , Leche/química , Urea/metabolismo , Adenosina Trifosfato/análisis
15.
J Sci Food Agric ; 104(2): 1200-1206, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647419

RESUMEN

BACKGROUND: The two essential editing elements in the clustered regularly interspaced short palindromic repeats (CRISPR) editing system are promoter and single-guide RNA (sgRNA), the latter of which determines whether Cas protein can precisely target a specific location to edit the targeted gene. Therefore, the selection of sgRNA is crucial to the efficiency of the CRISPR editing system. Various online prediction tools for sgRNA are currently available. These tools can predict all possible sgRNAs of the targeted gene and rank sgRNAs according to certain scoring criteria according to the demands of the user. RESULTS: We designed sgRNAs for Lactococcus lactis NZ9000 LLNZ_RS02020 (ldh) and LLNZ_RS10925 (upp) individually using online prediction software - CRISPOR - and successfully constructed a series of knockout strains to allow comparison of the knockout efficiency of each sgRNA and analyze the differences between software predictions and actual experimental results. CONCLUSION: Our experimental results showed that the actual editing efficiency of the screened sgRNAs did not match the predicted results - a phenomenon that suggests that established findings from eukaryotic studies are not universally applicable to prokaryotes. Software prediction can still be used as a tool for the initial screening of sgRNAs before further selection of suitable sgRNAs through experimental experience. © 2023 Society of Chemical Industry.


Asunto(s)
Edición Génica , Lactococcus lactis , Edición Génica/métodos , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Lactococcus lactis/genética , Programas Informáticos
16.
DNA Cell Biol ; 42(11): 680-688, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37815547

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) is a unique neurotrophic factor (NTF) that has shown significant neuroprotective and neurorestorative functions on midbrain dopaminergic neurons. The secondary structure of human CDNF protein contains eight α-helices. We previously found that two key helices, α1 and α7, regulated the intracellular trafficking and secretion of CDNF protein in different manners. The α1 mutation (M1) induced most CDNF proteins to reside in the endoplasmic reticulum and little be secreted extracellularly, while the α7 mutation (M7) caused the majority of CDNF proteins to be secreted out of the cells and little reside in the cells. However, the regulation of the two mutants on the function of CDNF remains unclear. In this study, we investigated the effects of M1 and M7 on the protective activity of CDNF in PC12 cells, which were treated with 6-hydroxydopamine (6-OHDA) to mimic Parkinson's disease. We found that both M1 and M7 could promote survival and inhibit apoptosis more effectively than Wt in 6-OHDA-lesioned PC12 cells. Therefore, these findings will advance our understanding of the important regulation of subdomains on the function of NTFs.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Ratas , Animales , Humanos , Oxidopamina/toxicidad , Células PC12 , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/farmacología , Factores de Crecimiento Nervioso/metabolismo , Enfermedad de Parkinson/genética
17.
Front Cardiovasc Med ; 10: 1145695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324633

RESUMEN

Aims: Few studies on early recurrence (ER) focused on patients with persistent atrial fibrillation (AF). We aimed to investigate the characteristics and clinical significance of ER in patients with persistent AF after catheter ablation (CA). Methods: A total of 348 consecutive patients who underwent first-time CA for persistent and long-standing persistent AF between January 2019 and May 2022 were investigated. Results: About 5/348 (1.44%) patients who failed to convert to sinus rhythm after CA were excluded. A total of 110/343 (32.1%) patients had ER, in which 98 (89.1%) were persistent and 50.9% occurred in the first 24 h after CA. Compared with the patients without ER, those with ER were more likely to have late recurrence (LR) (92.7% vs. 1.7%, P < 0.001) during a median follow-up of 13 (IQR 6-23) months. ER was the most significant independent predictor for LR (OR 120.5, 95% CI 41.5-349.8, P < 0.001). ER as atrial flutter (AFL) had a lower risk of LR when compared with ER as AF (P = 0.011) and both AF and AFL (P = 0.003). Early intervention of the patient with ER improved the short-term outcomes (P < 0.001), not long-term outcomes. Only 22/251 (8.76%) patients of LR appears among those who had no recurrence in the first month. Conclusions: Patients with persistent AF may not have a blanking period but rather have a risk period. Clinical significance of the blanking period should be given differential treatment between paroxysmal AF and persistent AF.

18.
J Agric Food Chem ; 71(24): 9337-9348, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37288995

RESUMEN

Western diet is thought to increase susceptibility to inflammatory bowel disease (IBD), and probiotics are a potential therapeutic agent for IBD. This study revealed the effects of Lactobacillus plantarum AR113 and L. plantarum AR113Δbsh1 on a dextran sulfate sodium (DSS)-induced colitis mouse model under the Western diet (WD). After four weeks of WD and low-sugar and low-fat diet (LD) intervention, induction with 3% DSS, and intragastric administration of probiotics, we found that L. plantarum AR113 could regulate blood glucose and lipid levels and have a certain protective effect on hepatocytes. Our results suggested that the L. plantarum AR113 alleviated DSS-induced colitis under the Western diet by improving dyslipidemia, repairing intestinal barrier dysfunction, and inhibiting the TLR4/Myd88/TRAF-6/NF-κB inflammatory pathway. However, these changes were not demonstrated in the L. plantarum AR113Δbsh1, and therefore, we reasoned that the presence of bsh1 may play a crucial role in the L. plantarum AR113 exerting its anti-inflammatory function. The relationship between bile salt hydrolase (BSH) and colitis was worthy of further exploration.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Lactobacillus plantarum , Probióticos , Animales , Ratones , Antiinflamatorios , Colitis/inducido químicamente , Colitis/genética , Colitis/terapia , Sulfato de Dextran/efectos adversos , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/microbiología , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo
19.
Microb Cell Fact ; 22(1): 112, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308875

RESUMEN

Bifidobacteria are representative intestinal probiotics that have extremely high application value in the food and medical fields. However, the lack of molecular biology tools limits the research on functional genes and mechanisms of bifidobacteria. The application of an accurate and efficient CRISPR system to genome engineering can fill the gap in efficient genetic tools for bifidobacteria. In this study, CRISPR system of B. animalis AR668 was established, which successfully knocked out gene 0348 and gene 0208. The influence of different homology arms and fragments on the knockout effect of the system was explored. In addition, the inducible plasmid curing system of bifidobacteria was innovatively established. This study contributes to the genetic modification and functional mechanism analysis of bifidobacteria.


Asunto(s)
Bifidobacterium animalis , Probióticos , Sistemas CRISPR-Cas , Bifidobacterium , Edición Génica
20.
iScience ; 26(3): 106196, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36895642

RESUMEN

Bile salt hydrolases are thought to be the gatekeepers of bile acid metabolism. To study the role of BSH in colitis, we investigated the ameliorative effects of different BSH-knockout strains of Lactiplantibacillus plantarum AR113. The results showed that L. plantarum Δbsh 1 and Δbsh 3 treatments did not improve body weight and alleviate the hyperactivated myeloperoxidase activity to the DSS group. However, the findings for L. plantarum AR113, L. plantarum Δbsh 2 and Δbsh 4 treatments were completely opposite. The double and triple bsh knockout strains further confirmed that BSH 1 and BSH 3 are critical for the ameliorative effects of L. plantarum AR113. In addition, L. plantarum Δbsh 1 and Δbsh 3 did not significantly inhibit the increase in pro-inflammatory cytokines or the decrease in an anti-inflammatory cytokine. These results suggest that BSH 1 and BSH 3 in L. plantarum play important roles in alleviating enteritis symptoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA