Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
J Colloid Interface Sci ; 671: 702-711, 2024 May 23.
Article En | MEDLINE | ID: mdl-38823111

Aqueous zinc-ion batteries (AZIBs) have received considerable potential for their affordability and high reliability. Among potential cathodes, α-MoO3 stands out due to its layered structure aligned with the (010) plane, offering extensive ionic insertion channels for enhanced charge storage. However, its limited electrochemical activity and poor Zn2+ transport kinetics present significant challenges for its deployment in energy storage devices. To overcome these limitations, we introduce a new strategy by doping α-MoO3 with Ni (Ni-MoO3), tuning the electron spin states of Mo. Thus modification can activate the reactivity of Ni-MoO3 towards Zn2+ storage and weaken the interaction between Ni-MoO3 and intercalated Zn2+, thereby accelerating the Zn2+ transport and storage. Consequently, the electrochemical properties of Ni-MoO3 significantly surpass those of pure MoO3, demonstrating a specific capacity of 258 mAh g-1 at 1 A g-1 and outstanding rate performance (120 mAh g-1 at 10 A g-1). After 1000 cycles at 8 A g-1, it retains 76 % of the initial capacity, with an energy density of 154.4 Wh kg-1 and a power density of 11.2 kW kg-1. This work proves that the modulation of electron spin states in cathode materials via metal ion doping can effectively boost their capacity and cycling durability.

2.
Int J Mol Sci ; 24(11)2023 May 30.
Article En | MEDLINE | ID: mdl-37298467

The WRKY transcription factor family plays a vital role in plant development and environmental response. However, the information of WRKY genes at the genome-wide level is rarely reported in Caragana korshinskii. In this study, we identified and renamed 86 CkWRKY genes, which were further classified into three groups through phylogenetic analysis. Most of these WRKY genes were clustered and distributed on eight chromosomes. Multiple sequence alignment revealed that the conserved domain (WRKYGQK) of the CkWRKYs was basically consistent, but there were also six variation types (WRKYGKK, GRKYGQK, WRMYGQK, WRKYGHK, WKKYEEK and RRKYGQK) that appeared. The motif composition of the CkWRKYs was quite conservative in each group. In general, the number of WRKY genes gradually increased from lower to higher plant species in the evolutionary analysis of 28 species, with some exceptions. Transcriptomics data and RT-qPCR analysis showed that the CkWRKYs in different groups were involved in abiotic stresses and ABA response. Our results provided a basis for the functional characterization of the CkWRKYs involved in stress resistance in C. korshinskii.


Caragana , Caragana/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Multigene Family
3.
RSC Adv ; 13(20): 13985-13990, 2023 May 02.
Article En | MEDLINE | ID: mdl-37181516

Rational design of efficient and stable electrocatalysts for the hydrogen evolution reaction (HER) has attracted wide attention. Noble metal-based electrocatalysts with ultrathin structures and highly exposed active surfaces are essential to boost the HER performance, while the simple synthetic strategies remain challenging. Herein, we reported a facile urea-mediated method to synthesize hierarchical ultrathin Rh nanosheets (Rh NSs) without using toxic reducing agents and structure directing agents in the reaction. The hierarchical ultrathin nanosheet structure and grain boundary atoms endow Rh NSs with excellent HER activities, which only requires a lower overpotential of 39 mV in 0.5 M H2SO4 compared to the 80 mV of Rh nanoparticles (Rh NPs). Extending the synthesis method to alloys, hierarchical ultrathin RhNi nanosheets (RhNi NSs) can be also obtained. Benefiting from the optimization of electronic structure and abundant active surfaces, RhNi NSs only require an overpotential of 27 mV. This work provides a simple and promising method to construct ultrathin nanosheet electrocatalysts for highly active electrocatalytic performance.

4.
RSC Adv ; 13(22): 15295-15301, 2023 May 15.
Article En | MEDLINE | ID: mdl-37213338

Molybdenum trioxide (MoO3) is emerging as a hugely competitive cathode material for aqueous zinc ion batteries (ZIBs) for its high theoretical capacity and electrochemical activity. Nevertheless, owing to its undesirable electronic transport capability and poor structural stability, the practical capacity and cycling performance of MoO3 are yet unsatisfactory, which greatly blocks its commercial use. In this work, we report an effective approach to first synthesise nanosized MoO3-x materials to provide more active specific surface areas, while improving the capacity and cycle life of MoO3 by introducing low valence Mo and coated polypyrrole (PPy). MoO3 nanoparticles with low-valence-state Mo and PPy coating (denoted as MoO3-x@PPy) are synthesized via a solvothermal method and subsequent electrodeposition process. The as-prepared MoO3-x@PPy cathode delivers a high reversible capacity of 212.4 mA h g-1 at 1 A g-1 with good cycling life (more than 75% capacity retention after 500 cycles). In contrast, the original commercial MoO3 sample only obtains a capacity of 99.3 mA h g-1 at 1 A g-1, and a cycling stability of 10% capacity retention over 500 cycles. Additionally, the fabricated Zn//MoO3-x@PPy battery obtains a maximum energy density of 233.6 W h kg-1 and a power density of 11.2 kW kg-1. Our results provide an efficient and practical approach to enhance commercial MoO3 materials as high-performance cathodes for AZIBs.

5.
Org Lett ; 24(48): 8741-8746, 2022 Dec 09.
Article En | MEDLINE | ID: mdl-36279169

A novel synthetic strategy for efficient construction of dragon-boat-type heptathienoacenes (DBHTs) via the α-ß position carbon-carbon cross-coupling between two dithienothiophenes is employed. Their crystal structures are confirmed by X-ray single-crystal analysis. The first thin film FET devices of heptathienoacenes are fabricated using OTS-treated SiO2/Si substrates, in which DBHT-5-based devices exhibit an unprecedented highest hole mobility value of 1.15 cm2 V-1 s-1 and on/off ratios over 106 with a threshold voltage of 0 V.

6.
Beilstein J Org Chem ; 18: 809-817, 2022.
Article En | MEDLINE | ID: mdl-35875710

2,5-Di(trimethylsilanyl)dithieno[2,3-b:3',2'-d]thiophene ((TMS)2-bb-DTT), 2,5-di(trimethylsilanyl)diseleno[2,3-b:3',2'-d]thiophene ((TMS)2-bb-DST), and 2,5-di(trimethylsilanyl)diseleno[2,3-b:3',2'-d] selenophene ((TMS)2-bb-DSS) were used as starting materials to synthesize three S-shaped double helicenes (i.e., DH-1, DH-2, and DH-3) through monobromination, formylation, the Wittig reaction, and double oxidative photocyclization. The photocyclization was a highly regioselective process. The molecular structures of DH-1 and DH-2 were confirmed by X-ray single-crystal analysis. Multiple intermolecular interactions, such as C-S, C-Se, S-S, S-Se, and Se-Se, were observed in the crystal packing structures of these compounds. Spectroscopic results and our previous work showed that the combination of molecular structure change and heteroatom replacement from S to Se could precisely modulate molecular energy levels.

7.
Org Biomol Chem ; 20(25): 5145-5151, 2022 Jun 29.
Article En | MEDLINE | ID: mdl-35708061

Three unsymmetrical wave-shaped heptathienoacenes (UHT-1, UHT-2 and UHT-3) with sulfur atoms at different isomeric locations in the two terminal thiophene rings were designed and synthesized. The synthetic strategy contains two crucial steps, including the cross-coupling of two different dithienothiophene isomers (DTT) from dithieno[2,3-b:3',2'-d]thiophene (bb-DTT), dithieno[2,3-b:2',3'-d]thiophene (bt-DTT) and dithieno[2,3-b:3',4'-d]thiophene (bs-DTT) as building blocks through the Negishi coupling and intramolecular cyclization reactions with (SnBu3)2S. X-ray crystal structures of UHT-1, UHT-2 and UHT-3 show that the molecules adopt a wave-shaped geometry with multiple intermolecular interactions, such as S-S, S-C and S-H, which result in different crystal packing patterns. The isomeric location of the sulfur atoms of the two terminal thiophene rings of UHT-1, UHT-2 and UHT-3 plays an important role in tuning π-electronic conjugation and spectroscopic behaviors.

8.
RSC Adv ; 12(19): 11665-11670, 2022 Apr 13.
Article En | MEDLINE | ID: mdl-35432944

With high reactivity, electrical conductivity, theoretical specific capacitance and well redox reversibility, transition metal sulfides are considered as a promising anode material for supercapacitors. Hence, we designed a simple two-step hydrothermal process to grow Co4S3 nanorod arrays in situ on flexible carbon cloth substrates. Benefited from the larger specific surface area of nanoarrays, the binder-free Co4S3 electrode demonstrates a higher specific capacity of 1.97 F cm-2 at a current density of 2 mA cm-2, while the Co3O4 electrode has a capacity of only 0.07 F cm-2 at the same current density. Surprisingly, at a high scan rate of 200 mV s-1, the synthesized Co4S3 electrode still maintains almost 100% of its initial capacitance after 5000 cycles. Moreover, when using the prepared Co4S3 and MnO2 electrode as the anode and cathode, the fabricated flexible supercapacitor obtains a high volumetric energy density of 0.87 mW h cm-3 (power density of 0.78 W cm-3) and a peak power density of 0.89 W cm-3 (energy density of 0.50 mW h cm-3). The excellent electrochemical properties imply that there is a large market for the prepared materials in flexible energy storage devices.

9.
Biochem Biophys Res Commun ; 610: 23-29, 2022 06 25.
Article En | MEDLINE | ID: mdl-35430448

Motivational states are important determinants of behavior. In Drosophila melanogaster, courtship behavior is robust and crucial for species continuation. However, the motivation of courtship behavior remains unexplored. We first find the phenomenon that courtship behavior is modulated by motivational state. A male fly courts another male fly when it first courts a decapitated female fly, however, male-male courtship behavior rarely occurs under normal conditions. Therefore, in this phenomenon, the male fly's courtship motivational state is induced by its exposure to female flies. Blocking dopaminergic neurons synaptic transmission by expressing Tetanus toxin light chain (TNTe) decreases motivational state induced male-male courtship behavior without affecting male-female courtship behavior. Vision cues are another key component in sexually driven Drosophila male-male courtship behavior. Here, we identify a base theory that the inner motivational state could eventually decide Drosophila behavior.


Drosophila Proteins , Drosophila , Animals , Courtship , Dopaminergic Neurons/physiology , Drosophila/physiology , Drosophila melanogaster/physiology , Female , Male , Motivation , Sexual Behavior, Animal/physiology
10.
J Proteomics ; 250: 104383, 2022 01 06.
Article En | MEDLINE | ID: mdl-34562664

Lysine 2-hydroxyisobutyrylation (Khib) is one of the newly discovered post-translational modifications (PTMs) through protein acylation. It has been reported to be widely distributed in both eukaryotes and prokaryotes, and plays an important role in chromatin conformation change, gene transcription, protein subcellular localization, protein-protein interaction, signal transduction, and cellular proliferation. In this study, the Khib modification proteome of siliques from A. thaliana under salt stress (Ss) and those in the control (Cs) were compared. The results showed that Khib modification was abundant in siliques. Totally 3810 normalized Khib sites on 1254 proteins were identified, and the Khib modification showed a downregulation trend dramatically: it was down-regulated at 282 sites on 205 proteins while was up-regulated at 96 sites on 78 proteins in Ss siliques (Data are available via ProteomeXchange with identifier PXD028116 and PXD026643). Among them, 13 proteins, including F4IVN6, Q9M1P5, and Q9LF33, had sites with the most significant regulation of Khib modification. Bioinformatics analysis suggested that the differentially Khib-regulated proteins mainly participated in glycolysis/gluconeogenesis and endocytosis. In particular, there were differentially117 Khib-regulated proteins that were mapped to the protein-protein interaction database. In the KEGG pathway enrichment analysis, Khib-modified proteins were enriched in several pathways related to energy metabolism, including gluconeogenesis pathway, pentose phosphate pathway, and pyruvate metabolism. Overall, our work reveals the first systematic analysis of Khib proteome in Arabidopsis siliques under salt stress, and sheds a light on the future studies on the regulatory mechanisms of Khib during the salt stress response of plants. SIGNIFICANCE: In this study, we found the Khib-modified proteins in silique under salt stress and described the enrichment of Khib-modified proteins involved in the biological processes and cellular localization. Proteins undergoing 2-hydroxyisobutylation were mainly involved in the gluconeogenesis pathway, pentose phosphate pathway, and pyruvate metabolism, suggesting that 2-hydroxyisobutylation affects the energy metabolic pathway, and thus the development of the plant. In addition, specific candidate proteins that may affect plant development under salt stress were selected. This study will provide a theoretical basis for revealing the function and mechanism of these proteins and their 2-hydroxyisobutyryl modifications during the development of silique under salt stress.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Salt Stress
11.
J Pathol ; 256(4): 455-467, 2022 04.
Article En | MEDLINE | ID: mdl-34939675

Neutrophil extracellular traps (NETs) are extracellular structures, composed of nuclear DNA and various proteins released from neutrophils. Evidence is growing that NETs exert manifold functions in infection, immunity and cancer. Recently, NETs have been detected in colorectal cancer (CRC) tissues, but their association with disease progression and putative functional impact on tumourigenesis remained elusive. Using high-resolution stimulated emission depletion (STED) microscopy, we showed that citrullinated histone H3 (H3cit) is sufficient to specifically detect citrullinated NETs in colon cancer tissues. Among other evidence, this was supported by the close association of H3cit with de-condensed extracellular DNA, the hallmark of NETs. Extracellular DNA was reliably differentiated from nuclear condensed DNA by staining with an anti-DNA antibody, providing a novel and valuable tool to detect NETs in formalin-fixed paraffin-embedded tissues. Using these markers, the clinical association of NETs was investigated in a cohort of 85 patients with colon cancer. NETs were frequently detected (37/85, 44%) in colon cancer tissue sections and preferentially localised either only in the tumour centre or both in the tumour centre and the invasive front. Of note, citrullinated NETs were significantly associated with high histopathological tumour grades and lymph node metastasis. In vitro, purified NETs induced filopodia formation and cell motility in CRC cell lines. This was associated with increased expression of mesenchymal marker mRNAs (vimentin [VIM], fibronectin [FN1]) and epithelial-mesenchymal transition promoting transcription factors (ZEB1, Slug [SNAI2]), as well as decreased expression of the epithelial markers E-cadherin (CDH1) and epithelial cell adhesion molecule (EPCAM). These findings indicated that NETs activate an epithelial-mesenchymal transition-like process in CRC cells and may contribute to the metastatic progression of CRC. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Colonic Neoplasms , Extracellular Traps , Biomarkers/metabolism , Colonic Neoplasms/metabolism , DNA , Epithelial-Mesenchymal Transition , Extracellular Traps/metabolism , Humans , Neutrophils
12.
J Org Chem ; 86(6): 4413-4422, 2021 Mar 19.
Article En | MEDLINE | ID: mdl-33683908

Three unsymmetric thiophene-based [7]helicenes, namely, endo-exo-UH-1, endo-top-UH-2, and exo-top-UH-3, with different isomeric locations of sulfur atoms in two terminal thiophene rings were efficiently synthesized using dithieno[2,3-b:3',2'-d]thiophene (bb-DTT), dithieno[2,3-b:2',3'-d]thiophene (bt-DTT), and dithieno[2,3-b:3',4'-d]thiophene (bs-DTT) as building blocks via Suzuki cross-coupling and intramolecular cyclization reactions. Aside from these racemic [7]helicenes, two novel heterocyclic isomers, namely, trithienothiepines TTTP-1 and TTTP-2, were simultaneously obtained during the intramolecular cyclization. Two novel deprotonations of bi-DTTs and cyclization for synthesizing target compounds showed high selectivity and efficiently constructed both UHs and TTTPs. X-ray crystallographic analyses revealed that the UHs have typical helical molecular structures. The isomeric location of sulfur atoms in the two terminal thiophene rings in endo-exo-UH-1, endo-top-UH-2, exo-top-UH-3, and TTTP-1 allowed multiple intermolecular interactions, such as S···S, S···C, and S···H interactions, resulting in different crystal-packing patterns. Moreover, the absorption behaviors of these [7]helicenes, TTTP-1, and TTTP-2 were examined and theoretically calculated. Results indicated that the isomeric location of sulfur atoms plays a key role in tuning intramolecular π-electronic conjugation.

13.
Soft Matter ; 17(2): 341-345, 2021 Jan 22.
Article En | MEDLINE | ID: mdl-33415325

Based on saddle-shaped cyclooctathiophene (COTh) as a building block, ligands 2 and 3 were synthesized bearing 3- or 4-substituted pyridyl groups as coordination groups, which showed strong gelation abilities with AgBF4 in several solvents at room temperature. This Ag+-induced metallogel exhibited outstanding stimuli-responsive properties upon addition of halogen ions, acetonitrile or H2O.

15.
Nat Commun ; 11(1): 2724, 2020 06 01.
Article En | MEDLINE | ID: mdl-32483144

Proteolytical processing of the growth factor VEGFC through the concerted activity of CCBE1 and ADAMTS3 is required for lymphatic development to occur. How these factors act together in time and space, and which cell types produce these factors is not understood. Here we assess the function of Adamts3 and the related protease Adamts14 during zebrafish lymphangiogenesis and show both proteins to be able to process Vegfc. Only the simultaneous loss of both protein functions results in lymphatic defects identical to vegfc loss-of-function situations. Cell transplantation experiments demonstrate neuronal structures and/or fibroblasts to constitute cellular sources not only for both proteases but also for Ccbe1 and Vegfc. We further show that this locally restricted Vegfc maturation is needed to trigger normal lymphatic sprouting and directional migration. Our data provide a single-cell resolution model for establishing secretion and processing hubs for Vegfc during developmental lymphangiogenesis.


Fibroblasts/metabolism , Lymphangiogenesis/genetics , Neurons/metabolism , Vascular Endothelial Growth Factor C/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism , Animals , Animals, Genetically Modified , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Lymphatic Vessels/embryology , Lymphatic Vessels/metabolism , Microscopy, Confocal , Procollagen N-Endopeptidase/genetics , Procollagen N-Endopeptidase/metabolism , Vascular Endothelial Growth Factor C/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
16.
Aging (Albany NY) ; 11(22): 10374-10384, 2019 11 26.
Article En | MEDLINE | ID: mdl-31772141

Evidence has shown that hypoxia promotes esophageal squamous cell carcinoma (ESCC) growth and metastasis, but the molecular mechanisms underlying that response remain poorly understood. MicroRNAs (miRNAs) are post-transcriptional regulators that participate in various cancer-related processes. Here, we demonstrated that hypoxia along with hypoxia-inducible factor 1α significantly increased expression of miR-10b-3p. Inhibition of miR-10b-3p weakened the effects of hypoxia on ESCC cell proliferation, migration and invasion, while miR-10b-3p overexpression had the opposite effects. Mechanistically, miR-10b-3p acted as cancer-promoting gene by targeting testis specific 10. Using a xenograft model, we observed that administration of miR-10b-3p agomir to tumors enhanced their growth and metastasis in vivo. These findings verified the potent regulatory role played by hypoxia-induced miR-10b-3p expression in ESCC progression. These results suggest that miR-10b-3p may be a useful therapeutic target for treating ESCC.


Cell Hypoxia/genetics , Cytoskeletal Proteins/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/metabolism , Animals , Cell Line, Tumor , Cytoskeletal Proteins/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Heterografts , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , MicroRNAs/genetics , Neoplasm Invasiveness/genetics
17.
BMC Plant Biol ; 19(1): 237, 2019 Jun 06.
Article En | MEDLINE | ID: mdl-31170915

BACKGROUND: The Agrobacterium-mediated transient transformation is a versatile and indispensable way of rapid analyzing gene function in plants. Despite this transient expression system has been successfully applied in a number of plant species, it is poorly developed in Caragana intermedia. RESULTS: In this study, we established an Agrobacterium-mediated transient expression system in C. intermedia leaves and optimized the effect of different Agrobacterial strains, several surfactants and the concentration of Silwet L-77, which would affect transient expression efficiency. Among the 5 Agrobacterial strains examined, GV3101 produced the highest GUS expression level. Besides, higher level of transient expression was observed in plants infiltrated with Silwet L-77 than with Triton X-100 or Tween-20. Silwet L-77 at a concentration of 0.001% greatly improved the level of GUS transient expression. Real-time PCR showed that expression of CiDREB1C was highly up-regulated in transiently expressed plants and reached the highest level at the 2nd day after infiltration. Based on this optimized transient transformation method, we characterized CiDREB1C function in response to drought, salt and ABA treatment. The results showed that transiently expressed CiDREB1C in C. intermedia leaves could enhance the survival rate and chlorophyll content, and reduce the lodging rate compared with the control seedlings under drought, salt and ABA treatments. Furthermore, the rate of leaf shedding of CiDREB1C transient expression seedlings was lower than that of the control under ABA treatment. CONCLUSIONS: The optimized transient expression condition in C. intermedia leaves were infiltrated with Agrobacterial strains GV3101 plus Silwet L-77 at a concentration of 0.001% added into the infiltration medium. Transiently expressed CiDREB1C enhanced drought, salt and ABA stress tolerance, indicated that it was a suitable and effective tool to determine gene function involved in abiotic stress response in C. intermedia.


Agrobacterium/genetics , Caragana/physiology , Gene Expression Regulation, Plant , Genetic Engineering/methods , Plant Proteins/genetics , Plants, Genetically Modified/physiology , Transcription Factors/genetics , Arabidopsis Proteins , Caragana/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/metabolism
18.
Chemistry ; 24(60): 15993-15997, 2018 Oct 26.
Article En | MEDLINE | ID: mdl-30076638

The design and synthesis of homochiral double helicates are reported that are constructed by means of Ag-induced supramolecular self-sorting of saddle-shaped cyclooctatetrathiophene-based pyridine ligands (1 and 2). The intramolecular S⋅⋅⋅N interaction ensures that the thiophene and pyridine rings of ligands 1 and 2 are in coplanar and syn-locked structures. In the presence of Ag+ , the racemic ligands 1 and 2 only afforded homochiral double helicates, indicating effective chiral self-sorting process under the influence of the S⋅⋅⋅N interaction. The X-ray crystal structure of 12 Ag2 reveals a pair of homochiral double helicates (R,R,R,R)-12 Ag2 and (S,S,S,S)-12 Ag2 . Furthermore, chiral resolution of racemic ligand 1 was achieved by chiral-phase HPLC, and the enantiomers and their corresponding enantiopure Ag complexes were characterized.

19.
Nat Commun ; 9(1): 2364, 2018 06 13.
Article En | MEDLINE | ID: mdl-29899410

The original version of this Article omitted the Received and Accepted dates; they should have been 22nd January 2018 and 19th April 2018, respectively. This has been corrected in the PDF and HTML versions of the Article.

20.
Curr Opin Immunol ; 53: 167-172, 2018 08.
Article En | MEDLINE | ID: mdl-29800868

The lymphatic vasculature plays vital roles in immune surveillance, fluid homeostasis and fat absorption in the body. Lined by endothelial cells, the lymphatic system is functionally distinct from the blood vasculature, and fulfills different physiological functions. In recent years, insight from zebrafish, mice and human patients have improved our understanding of lymphatics, and the interplay between zebrafish genetics, studies in mice and GWAS analysis in human patients have identified genes that, when mutated, will lead to lymphedema formation. Here, we focus on components of the Vegfr3 pathway, and how they are connected to Milroy disease and Hennekam syndrome.


Lymphangiogenesis , Lymphatic Vessels/physiology , Lymphedema/genetics , Animals , Embryo, Nonmammalian , Fishes , Genome-Wide Association Study , Homeostasis , Humans , Immunologic Surveillance , Lipid Metabolism , Lymphedema/immunology , Mice , Signal Transduction , Vascular Endothelial Growth Factor Receptor-3/metabolism
...