Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(24): 17315-17323, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38860395

RESUMEN

Halide perovskites have distinguished themselves among the numerous optoelectronic materials due to their versatile processing technology and exceptional optical response. Unfortunately, their stability and toxicity from heavy metals severely hamper their development, in addition to the challenge of further improving photovoltaic performance. Hence, a lead-free perovskite-based heterojunction, C2N/CsGeI3, is investigated using a hybrid density functional, including electron structures, charge density differences, optical properties and more. The study reveals the presence of a built-in electric field directed from the CsGeI3 to the C2N layer. Moreover, based on the work function, it is confirmed that the electrons are transferred in a Z-scheme mechanism after the CsGeI3 contacts with the C2N layer. Under light irradiation, the construction of the C2N/CsGeI3 heterojunction significantly enhances optical absorption within the range of visible-light wavelengths. Additionally, the impact of interfacial strain on the C2N/CsGeI3 is explored and discussed. These findings not only suggest that the C2N/CsGeI3 heterojunction holds promise for photovoltaic applications but also provide a theoretical insight into lead-free perovskite-based functional materials.

2.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930861

RESUMEN

Hydrogen generation by photocatalytic water-splitting holds great promise for addressing the serious global energy and environmental crises, and has recently received significant attention from researchers. In this work, a method of assembling GeC/MXY (M = Zr, Hf; X, Y = S, Se) heterojunctions (HJs) by combining GeC and MXY monolayers (MLs) to construct direct Z-scheme photocatalytic systems is proposed. Based on first-principles calculations, we found that all the GeC/MXY HJs are stable van der Waals (vdW) HJs with indirect bandgaps. These HJs possess small bandgaps and exhibit strong light-absorption ability across a wide range. Furthermore, the built-in electric field (BIEF) around the heterointerface can accelerate photoinduced carrier separation. More interestingly, the suitable band edges of GeC/MXY HJs ensure sufficient kinetic potential to spontaneously accomplish water redox reactions under light irradiation. Overall, the strong light-harvesting ability, wide light-absorption range, small bandgaps, large heterointerfacial BIEFs, suitable band alignments, and carrier migration paths render GeC/MXY HJs highly efficient photocatalysts for overall water decomposition.

3.
Langmuir ; 40(15): 7992-8001, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38561994

RESUMEN

Two-dimensional (2D) materials with a pentagonal structure have many unique physical properties and great potential for applications in electrical, thermal, and optical fields. In this paper, the intrinsic thermal transport properties of 2D pentagonal CX2 (X = N, P, As, and Sb) are comparatively investigated. The results show that penta-CN2 has a high thermal conductivity (302.7 W/mK), while penta-CP2, penta-CAs2, and penta-CSb2 have relatively low thermal conductivities of 60.0, 36.9, and 11.8 W/mK, respectively. The main reason for the high thermal conductivity of penta-CN2 is that the small atomic mass of the N atom is comparable to that of the C atom, resulting in a preferable pentagonal structure with stronger bonds and thus a higher phonon group velocity. The reduction in the thermal conductivity of the other three materials is mainly due to the gradually increased atomic mass from P to Sb, which reduces the phonon group velocity. In addition, the large atomic mass difference does not result in a huge enhancement of the anharmonicity or weakening of the phonon relaxation time. The present work is expected to deepen the understanding of the thermal transport of main group V 2D pentagonal carbons and pave the way for their future applications, also, providing ideas for finding potential thermal management materials.

4.
Insects ; 15(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667418

RESUMEN

The timing of decocooning and nesting during the flowering period are crucial for the reproduction and pollination activities of Osmia excavata. In order to improve the pollination efficiency of O. excavata, it is crucial to find a way to break the cocoon quickly. Our results showed that the decocooning rates at 6, 12, 24, 36, 48, and 72 h after 30 min of water immersion (WI) were 28.67%, 37.33%, 37.33%, 41.33%, 44.33%, and 53.00%, respectively. The decocooning rate fold of 6 h was 14.33 compared with the control group. Transcriptome sequencing resulted in 273 differentially expressed genes (DEGs) being identified between the WI and control groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that muscle-related functions play important roles in O. excavata decocooning in response to WI. Cluster analysis also showed that DEGs in cardiac muscle contraction and adrenergic signaling in cardiomyocytes were up-regulated in response to WI-promoted decocooning. In conclusion, the rate of decocooning can be improved by WI in a short time. During WI-promoted decocooning, muscle-related pathways play an important role. Therefore, the application of this technology will improve the pollination effect of O. excavata.

5.
Technol Health Care ; 32(4): 2619-2628, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517818

RESUMEN

BACKGROUND: How to comprehensively evaluate the rationality of drug use is a challenging issue. OBJECTIVE: To establish the evaluation index of the effective use of tislelizumab, so as to ensure its higher rationality and normalization in clinical application. METHODS: Based on the indications, drug instructions, and relevant guidelines of the National Basic Medical Insurance Restriction Catalogue, a retrospective analysis and evaluation of 286 cases of using tislelizumab injection in our hospital from January to December 2022 were conducted using the weighted technique for order of preference by similarity to ideal solution (TOPSIS) method. RESULTS: Among the 286 medical records evaluated, the main irrational manifestations were inappropriate indications (90 cases, 31.47%), auxiliary examination and laboratory examination did not meet the minimum requirements of combination chemotherapy drugs (40 cases, 13.99%), the drug course was not standard (39 cases, 13.64%). Among the included cases, 57.34% were reasonable cases (Ci⩾ 0.8), 10.84% were basic reasonable cases (0.6 ⩽Ci< 0.8), and 31.82% were unreasonable cases (Ci< 0.6). CONCLUSION: The TOPSIS method, with its attribute hierarchical model (AHM)-weighted approach, can be employed as the rational assessment technique for the injection of tislelizumab. The clinical application of tislelizumab in our hospital is still insufficient, which needs to be further improved management.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Estudios Retrospectivos , Femenino , Masculino , Persona de Mediana Edad , Utilización de Medicamentos/estadística & datos numéricos , Adulto , Anciano
6.
Langmuir ; 40(6): 3095-3104, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38299976

RESUMEN

Two-dimensional graphenelike material, hexagonal boron phosphide (h-BP), is a promising candidate for electronic and optoelectronic devices because of its suitable band gap and high carrier mobility. Especially from the ultrahigh lattice thermal conductivity (κl), it exhibits great potential to solve the challenges of future thermal management applications. Here, the excellent lattice thermal transport properties of the h-BP monolayer are systematically analyzed at the atomic level based on the first-principles method. The results show that the ultrahigh κl value of the h-BP monolayer is attributed to its high phonon group velocity and long phonon lifetime and the strong phonon hydrodynamic effect. We further explore the influence of the tensile strain on the thermal transport properties of the h-BP monolayer. As the strain increases from 0 to 8%, the κl value shows a trend of first increasing and then decreasing due to the coeffect of strain-driven changes for phonon harmonicity and anharmonicity. Under a strain of 6%, the κl value of the h-BP monolayer is as high as 795 W/mK at 300 K, which is about 2.22 times larger than that of 357 W/mK without strain. Such a significant increase in the κl value is mainly due to the increased phonon group velocity and decreased Grüneisen parameter caused by strain. This work is helpful to understand the critical role of tensile strain in lattice thermal transport of two-dimensional graphenelike materials. It is conducive to promoting the thermal management application of the h-BP monolayer.

7.
J Phys Condens Matter ; 36(21)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38364264

RESUMEN

Antiferromagnetic (AFM) materials have potential advantages for spintronics due to their robustness, ultrafast dynamics, and magnetotransport effects. However, the missing spontaneous polarization and magnetization hinders the efficient utilization of electronic spin in these AFM materials. Here, we propose a simple way to produce spin-splitting in AFM materials by making the magnetic atoms with opposite spin polarization locating in the different environment (surrounding atomic arrangement), which does not necessarily require the presence of spin-orbital coupling. We confirm our proposal by four different types of two-dimensional AFM materials within the first-principles calculations. Our works provide an intuitional design principle to find or produce spin-splitting in AFM materials.

8.
J Gene Med ; 26(1): e3664, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282143

RESUMEN

BACKGROUND: The primary reason for tumor-related deaths worldwide is lung adenocarcinoma (LUAD). The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is crucial for contributing to tumor initiation and progression. However, the precise function and molecular mechanism of IQGAP3 in LUAD remain unknown. The present study aimed to investigate the expression, prognosis, mechanism and tumor immunity associated with IQGAP3 in LUAD. METHODS: The relationship between IQGAP3 and the poor prognosis of LUAD was analyzed using The Cancer Genome Atlas (TCGA) database. This analysis was further validated on lung cancer tissues and cell lines. The function of IQGAP3 was investigated by silencing it in LUAD cell lines. To predict microRNA (miRNA) and long non-coding RNA associated with IQGAP3, the starBase database was utilized, and the predictions were verified by enhancing the function of miRNA. Finally, the relationship between IQGAP3 and tumor immunity was evaluated using Spearman's correlation analysis. RESULTS: TCGA database revealed that higher levels of IQGAP3 were associated with advanced tumor stage, N stage and poor prognosis in LUAD patients. To confirm that, we conducted experiments on lung cancer tissues and cell lines and found that silencing IQGAP3 significantly inhibited tumor cell proliferation and migration. The expression of IQGAP3 showed a negative correlation with has-miR-101-3p and has-miR-135a-5p, whereas it showed a positive correlation with GSEC, AC005034.3 and TYMSOS. Furthermore, the introduction of miRNA-mimics into lung cancer cell resulted in a significant inhibition of cancer cell growth and migration. Following that, the level of IQGAP3 showed a positive correlation with the infiltration of immune cells in tumors. CONCLUSIONS: These results reveal that IQGAP3 significantly promotes LUAD progression and could serve as a prognostic biomarker for LUAD. Furthermore, IQGAP3 is most likely regulated by the GSEC/TYMSOS-hsa-miR-101-3p axis and the AC005034.3-hsa-miR-135a-5p axis in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Adenocarcinoma del Pulmón/genética , MicroARNs/genética , Neoplasias Pulmonares/genética , Línea Celular , Proliferación Celular/genética , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Proteínas Activadoras de GTPasa
9.
Front Chem ; 11: 1301690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025073

RESUMEN

Under the background of energy crisis, hydrogen owns the advantage of high combustion and shows considerable environment friendliness; however, to fully utilize this novel resource, the major hurdle lies in its delivery and storage. The development of the in-depth yet systematical methodology for two-dimensional (2D) storage media evaluation still remains to be challenging for computational scientists. In this study, we tried our proposed evaluation protocol on a 2D material, g-C3N5, and its hydrogen storage performance was characterized; and with addition of Li atoms, the changes of its electronical and structural properties were detected. First-principles simulations were conducted to verify its thermodynamics stability; and, its hydrogen adsorption capacity was investigated qualitatively. We found that the charges of the added Li atoms were transferred to the adjacent nitrogen atoms from g-C3N5, with the formation of chemical interactions. Thus, the isolated metallic sites tend to show considerable electropositivity, and can easily polarize the adsorbed hydrogen molecules, and the electrostatic interactions can be enhanced correspondingly. The maximum storage capacity of each primitive cell can be as high as 20 hydrogen molecules with a gravimetric capacity of 8.65 wt%, which surpasses the 5.5 wt% target set by the U.S. Department of Energy. The average adsorption energy is ranged from -0.22 to -0.13 eV. We conclude that the complex 2D material, Li-decorated g-C3N5 (Li@C3N5), can serve as a promising media for hydrogen storage. This methodology provided in this study is fundamental yet instructive for future 2D hydrogen storage materials development.

10.
Phys Chem Chem Phys ; 25(36): 24332-24341, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37670676

RESUMEN

As a novel type of anisotropic two-dimensional material, extensive attention has been paid to the thermoelectric (TE) properties of FeOCl-type monolayers, such as Al2X2Se2 (X = Cl, Br, I), Sc2I2S2, and Ir2Cl2O2. Recently, theoretical works based on first-principles calculations have been powerful driving forces in field of TE research. In this work, we perform an investigation into the TE properties of Sc2X2Se2 (X = Cl, Br, I) monolayers based on density functional theory (DFT). A study on the stability, including AIMD simulation and phonon calculation, shows the stable structure of Sc2Cl2Se2, Sc2Br2Se2, and Sc2I2Se2 monolayers. Additionally, the electronic and thermal transport properties of Sc2X2Se2 monolayers are anisotropic along the x and y directions. Moreover, the combination of excellent Seebeck coefficient and ultralow lattice thermal conductivity contributes to outstanding ZT values, and the ZT values follow the order: Sc2I2Se2 > Sc2Br2Se2 > Sc2Cl2Se2. At 300 K, we obtained maximum ZT of 0.34, 0.77, and 1.97 for Sc2Cl2Se2, Sc2Br2Se2, and Sc2I2Se2, respectively, by n-type doping in the x direction. These results demonstrate that monolayer Sc2X2Se2 (X = Cl, Br, I) materials are promising thermoelectric materials, Sc2I2Se2 has more desirable properties along the x direction, and n-type doping can significantly enhance the ZT values. Our work lays a foundation for exploring the TE transport properties of FeOCl-type monolayers.

11.
ACS Appl Mater Interfaces ; 15(40): 47628-47639, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37751513

RESUMEN

A novel chlorinated functional group-modified triphenylmethane derivative leveler BB1 is used to achieve superconformal electrodeposition in microvias. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to study the suppressing effect of BB1, while the convection-dependent adsorption of BB1 on the copper surface is analyzed by galvanostatic measurement, and a BB1 concentration window between 100 and 200 mg/L is beneficial for superfilling. The interactions among BB1, bis-(sodium sulfopropyl) disulfide (SPS), and poly(ethylene glycol) (PEG) are also investigated. Density functional theory (DFT) calculation and in situ Raman spectroscopy are coupled to study the suppression mechanism and synergistic suppression mechanism, namely, the adsorption effect between BB1 and copper substrate, as well as the coordination effect between the modified chlorinated functional group and Cu2+, is proposed. The copper layer becomes smoother and more compact with an increase in BB1 concentration, according to scanning electron microscopy (SEM) and atomic force microscopy (AFM), while X-ray diffraction (XRD) analysis shows that the introduction of BB1 is conducive to the formation of the copper (220) plane. Besides, the solution wettability is boosted by BB1. A copper interconnecting layer with high quality is achieved with 150 mg/L BB1, while the surface deposition thickness (SDT) is about 34 µm and filling percentages (FPs) for microvias with diameters of 100, 125, and 150 µm are 81.34, 82.72, and 81.39%, respectively.

12.
J Colloid Interface Sci ; 651: 805-817, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37572616

RESUMEN

Heterojunctions have been proved to be the promising photocatalysts for hazardous contaminants removal, but the inferior interfacial contact, low carrier mobility and random carrier diffusion seriously hamper the photoactivity improvement of the conventional heterojunctions. Herein, SO chemically bonded p-n oriented heterostructure is fabricated via selectively anchoring of p-type Ag2S nanoparticles on the lateral facet of n-type Bi4TaO8Cl nanosheet. Such a p-n heterojunction engineering on specific facet of Bi4TaO8Cl semiconductor derives ingenious double internal electric field (IEF), which not only effectively creates the spatially separated oxidation and reduction sites, but also delivers the powerful driving forces for impactful spatial directed photocarrier transfer along the cascade path. Additionally, our experimental and theoretical analyses jointly signify that the interfacial SO bond could serve as an efficient atomic-level interfacial channel, which is conducive to encouraging the vectorial charge separation and migration kinetic. As a result, the Ag2S/Bi4TaO8Cl oriented heterojunction exhibits significantly enhanced visible light driven photocatalytic redox ability for tetracycline oxidation and hexavalent chromium reduction than those of single component and the traditional random/mixed heterojunctions. This study could provide a deeper insight into the synergistic effects of multi-IEF modulation and interfacial chemical bond bridging on optimizing the photogenerated carrier behaviors.

13.
RSC Adv ; 13(34): 23590-23600, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37555100

RESUMEN

Recent studies have documented a rich phenomenology in twisted bilayer graphene (TBG), which is significantly relevant to interlayer electronic coupling, in particular to the cases under an applied electric field. While polarizability measures the response of electrons against applied fields, this work adopts a unique strategy of decomposing global polarizability into distributional contributions to access the interlayer polarization in TBG, as a function of varying twisting angles (θ). Through the construction of a model of twisted graphene quantum dots, we assess distributional polarizability at the first-principles level. Our findings demonstrate that the polarizability perpendicular to the graphene plates can be decomposed into intralayer dipoles and interlayer charge-transfer (CT) components, the latter of which provides an explicit measurement of the interlayer coupling strength and charge transfer potential. Our analysis further reveals that interlayer polarizability dominates the polarizability variation during twisting. Intriguingly, the largest interlayer polarizability and CT driven by an external field occur in the misaligned structures with a size-dependent small angle corresponding to the first appearance of AB stacking, rather than the well-recognized Bernal structures. A derived equation is then employed to address the size dependence on the angle corresponding to the largest values in interlayer polarizability and CT. Our investigation not only characterizes the CT features in the interlayer polarizability of TBG quantum dots, but also sheds light on the existence of the strongest interlayer coupling and charge transfer at small twist angles in the presence of an external electric field, thereby providing a comprehensive understanding of the novel properties of graphene-based nanomaterials.

14.
Dalton Trans ; 52(31): 10662-10671, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494114

RESUMEN

Improving the efficiency of the anodic oxygen evolution reaction (OER) is important to solve the global energy crisis and greenhouse gas emission problems. In this paper, a preparation method for a MIL-53(Fe)@ZIF-67(Co) composite electrode is proposed. The hierarchical structure formed by the combination of MIL-53(Fe) and ZIF-67(Co) provides a rich channel for the transport of electrons and mass in the OER process. XPS analysis and DFT calculations revealed that Fe electrons in MIL-53(Fe) were transferred to Co in ZIF-67(Co) through O, which confirmed the rapid charge transfer effect of this transport channel. The MIL-53(Fe)@ZIF-67(Co) electrode has significant OER performance. When the current density reaches 10 mA cm-2, the overpotential is only 193 mV. This study inaugurates a new way for the rational design of a multiphase interface and the construction of new MOF channel structures.

15.
Sci Total Environ ; 871: 162157, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36775174

RESUMEN

The interaction of microplastics (MPs) and organic pollutants has recently become a focus of investigation. To understand how microplastic residues affect the migration of organic pollutants, it is necessary to examine the adsorption and desorption behavior of organic pollutants on MPs. In this study, integrated adsorption/desorption experiments and theoretical calculations were used to clarify the adsorption mechanism of 2-hydroxynaphthalene (2-OHN), naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by polyvinyl chloride microplastics (PVC-MPs). Based on the phenomenological mathematical models, the rate-limiting step for analyte adsorption onto PVC-MPs was adsorption onto active sites (R2 = 0.865-0.995). Except for PHE, analyte adsorption isotherms were well described by the Freundlich model (R2 = 0.992-0.998), and adsorption thermodynamics showed that analyte adsorption on PVC-MPs was a spontaneous exothermic process (ΔH0 < 0; ΔG0 < 0). Based on the order of adsorption efficiency of 2-OHN < NAP < PHE < PYR, which is identical to the competitive adsorption experiment, polycyclic aromatic hydrocarbon (PAH) adsorption on PVC-MPs increased as the aromatic ring number increased and the hydroxyl content decreased. The release of 2-OHN (49 %-52 %) from PVC-MPs into the simulated gastrointestinal environment was greater than that of NAP (5.5 %-5.7 %). Theoretical calculations and adsorption tests indicated that hydrophobic interaction was the primary influence on the adsorption of PAHs and their hydroxylated derivatives by PVC-MPs. These findings improve our understanding of MPs' behavior and dangers as pollutant carriers in the aquatic environment and help us develop recommendations for the pollution control of MPs.


Asunto(s)
Contaminantes Ambientales , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Microplásticos/química , Plásticos/química , Cloruro de Polivinilo , Agua , Adsorción , Naftalenos , Hidrocarburos Policíclicos Aromáticos/análisis , Fenantrenos/análisis , Pirenos/análisis , Contaminantes Ambientales/química , Contaminantes Químicos del Agua/análisis
16.
Small ; 19(10): e2206844, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642855

RESUMEN

Designing robust electrocatalysts for water-splitting is essential for sustainable hydrogen generation, yet difficult to accomplish. In this study, a fast and facile two-step technique to synthesize Ru/RuO2 aerogels for catalyzing overall water-splitting under alkaline conditions is reported. Benefiting from the synergistic combination of high porosity, heterointerface, and tensile strain effects, the Ru/RuO2 aerogel exhibits low overpotential for oxygen evolution reaction (189 mV) and hydrogen evolution reaction (34 mV) at 10 mA cm-2 , surpassing RuO2 (338 mV) and Pt/C (53 mV), respectively. Notably, when the Ru/RuO2 aerogels are applied at the anode and cathode, the resultant water-splitting cell reflected a low potential of 1.47 V at 10 mA cm-2 , exceeding the commercial Pt/C||RuO2 standard (1.63 V). X-ray adsorption spectroscopy and theoretical studies demonstrate that the heterointerface of Ru/RuO2 optimizes charge redistribution, which reduces the energy barriers for hydrogen and oxygen intermediates, thereby enhancing oxygen and hydrogen evolution reaction kinetics.

17.
Phys Chem Chem Phys ; 25(3): 2274-2281, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36597784

RESUMEN

Strong structural asymmetry is actively explored in two-dimensional (2D) materials, because it can give rise to many interesting physical properties. Motivated by the recent synthesis of monolayer Si2Te2, we explored a family of 2D materials, named Janus Si dichalcogenides (JSD), which parallel the Janus transition metal dichalcogenides and exhibit even stronger inversion asymmetry. Using first-principles calculations, we show that their strong structural asymmetry leads to a pronounced intrinsic polar field, sizable spin splitting, and large piezoelectric response. The spin splitting involves an out-of-plane spin component, which is beyond the linear Rashba model. The piezoelectric tensor has a large value in both in-plane d11 coefficient and out-of-plane d31 coefficient, making monolayer JSDs distinct among existing 2D piezoelectric materials. In addition, we find interesting strain-induced phase transitions in these materials. Particularly, there are multiple valleys that compete for the conduction band minimum, which will lead to notable changes in the optical and transport properties under strain. Our work reveals a new family of Si based 2D materials, which could find promising applications in spintronic and piezoelectric devices.

18.
Nano Lett ; 23(3): 985-992, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36715576

RESUMEN

Despite the rapid progress in perovskite light-emitting diodes (PeLEDs), the electroluminescence performance of large-area perovskite devices lags far behind that of laboratory-size ones. Here, we report a 3.5 cm × 3.5 cm large-area PeLED with a record-high external quantum efficiency of 12.1% by creating an amphipathic molecular interface modifier of betaine citrate (BC) between the perovskite layer and the underlying hole transport layer (HTL). It is found that the surface wettability for various HTLs can be efficiently improved as a result of the coexistence of methyl and carboxyl groups in the BC molecules that makes favorable groups to selectively contact with the HTL surface and increases the surface free energy, which greatly facilitates the scalable process of solution-processed perovskite films. Moreover, the luminous performance of perovskite emitters is simultaneously enhanced through the coordination between C═O in the carboxyl groups and Pb dangling bonds.

19.
Phys Chem Chem Phys ; 24(41): 25287-25297, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36226481

RESUMEN

Direct Z-scheme water-splitting is a promising route to enhancing the photocatalytic performance due to the effective separation of photogenerated carriers while simultaneously preserving the strong oxidation activity of holes and reduction activity of electrons. In this work, the MoSSe/XY2 (X = Hf, Zr; S, Se) heterostructures (HSs) with different contacts are proposed for Z-scheme photocatalytic water-spitting by first principles calculation. The separation of photogenerated carriers for HfSe2/SMoSe and ZrSe2/SMoSe HSs is limited by the type-I band alignment, while the hydrogen production ability of HfSe2/SeMoS and ZrSe2/SeMoS HSs is limited by the lower conduction band edge positions relative to the water reduction potential. The HfS2/SMoSe, HfS2/SeMoS, ZrS2/SMoSe, and ZrS2/SeMoS HSs are direct Z-scheme water-splitting photocatalysts with the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) occurring at the Hf(Zr)S2 layer and MoSSe layer, respectively. More excitingly, the S (or Se) vacancies effectively lower the HER overpotentials. Besides, the solar-to-hydrogen efficiencies are 6.1%, 5.9%, 6.4%, and 6.3% for HfS2/SMoSe, HfS2/SeMoS, ZrS2/SMoSe, and ZrS2/SeMoS HSs, respectively. This work paves the way for designing highly efficient overall water-splitting photocatalysts using 2D materials.

20.
Nanotechnology ; 33(42)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35817003

RESUMEN

Two-dimensional (2D) Janus materials have attracted significant attention due to their asymmetrical structures and unique electronic properties. In this work, by using the first-principles calculation based on density functional theory, we systematically investigate the electronic properties of 6 types of Janus-XGa2Y/Graphene van der Waals heterostructures (vdWHs). The results show that the Janus-XGa2Y/Graphene vdWHs are connected by weak interlayer vdW forces and can form n-type Schottky contact, p-type Schottky contact or Ohmic contact when the spin-orbit coupling (SOC) is not considered. However, when considering SOC, only the SeGa2S/G and G/SeGa2S vdWHs show n-type Schottky contact, and other vdWHs show Ohmic contacts. In addition, the Schottky barriers and contact types of SeGa2S/Graphene and Graphene/SeGa2S vdWHs can be effectively modulated by interlayer distance and biaxial strain. They can be transformed from intrinsic n-type Schottky contact to p-type Schottky contact when the interlayer distances are smaller than 2.65 Å and 2.90 Å, respectively. They can also be transformed to Ohmic contact by applying external biaxial strain. Our work can provide useful guidelines for designing Schottky nanodiodes, field effect transistors or other low-resistance nanodevices based on the 2D vdWHs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA