Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(12): 1943-1958.e10, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38697112

RESUMEN

Mutations in the methyl-DNA-binding protein MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT). How MECP2 contributes to transcriptional regulation in normal and disease states is unresolved; it has been reported to be an activator and a repressor. We describe here the first integrated CUT&Tag, transcriptome, and proteome analyses using human neurons with wild-type (WT) and mutant MECP2 molecules. MECP2 occupies CpG-rich promoter-proximal regions in over four thousand genes in human neurons, including a plethora of autism risk genes, together with RNA polymerase II (RNA Pol II). MECP2 directly interacts with RNA Pol II, and genes occupied by both proteins showed reduced expression in neurons with MECP2 patient mutations. We conclude that MECP2 acts as a positive cofactor for RNA Pol II gene expression at many neuronal genes that harbor CpG islands in promoter-proximal regions and that RTT is due, in part, to the loss of gene activity of these genes in neurons.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Neuronas , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Humanos , Neuronas/metabolismo , Regiones Promotoras Genéticas , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Islas de CpG/genética , Mutación , Regulación de la Expresión Génica/genética
2.
J Mol Biol ; 435(6): 167990, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736885

RESUMEN

Stable 37 °C open complexes (OC) of E. coli RNA polymerase (RNAP) at λPR and T7A1 promoters form at similar rates but have very different lifetimes. To understand the downstream interactions responsible for OC lifetime, how promoter sequence directs them and when they form, we report lifetimes of stable OC and unstable late (I2) intermediates for promoters with different combinations of λPR (L) and T7A1 (T) discriminators, core promoters and UP elements. I2 lifetimes are similarly short, while stable OC lifetimes differ greatly, determined largely by the discriminator and modulated by core-promoter and UP elements. The free energy change ΔG3o for I2 â†’ stable OC is approximately -4 kcal more favorable for L-discriminator than for T-discriminator promoters. Downstream-truncation at +6 (DT+6) greatly destabilizes OC at L-discriminator but not T-discriminator promoters, making all ΔG3o values similar (approximately -4 kcal). Urea reduces OC lifetime greatly by affecting ΔG3o. We deduce that urea acts by disfavoring coupled folding of key elements of the ß'-clamp, that I2 is an open-clamp OC, and that clamp-closing in I2 â†’ stable OC involves coupled folding. Differences in ΔG3o between downstream-truncated and full-length promoters yield contributions to ΔG3o from interactions with downstream mobile elements (DME) including ß-lobe and ß'-jaw, more favorable for L-discriminator than for T-discriminator promoters. We deduce how competition between far-downstream DNA and σ70 region 1.1 affects ΔG3o values. We discuss variant-specific ΔG3o contributions in terms of the allosteric network by which differences in discriminator and -10 sequence are sensed and transmitted downstream to affect DME-duplex interactions in I2 â†’ stable OC.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Escherichia coli , Regiones Promotoras Genéticas , Factor sigma , ADN/química , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Transcripción Genética , Factor sigma/química , Factor sigma/genética , Regulación Alostérica , Bacteriófago T7/genética , Bacteriófago lambda/genética
3.
J Mol Biol ; 434(13): 167621, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35533764

RESUMEN

An understanding of the kinetics and mechanism of bacterial transcription initiation is needed to understand regulation of gene expression and advance fields from antibiotic discovery to promoter design. The step-by-step forward kinetics and mechanism of initiation and RNA-DNA hybrid growth, made irreversible by omitting pyrophosphate (PPi) byproduct, were determined recently for E. coli RNA polymerase (RNAP)-λPR promoter complexes. Strong position-dependences of overall rate constants (kcat/Km analogs) for each nucleotide-addition step were observed because of coupling of hybrid growth to disruption of promoter contacts, bubble closing, and RNAP escape. Here we investigate reversal of these steps (pyrophosphorolysis) at PPi concentrations ([PPi]) found in exponentially-growing cells. We quantify [PPi] effects on the amount and rate of synthesis of long (>10-mer, post-escape) and short (stalled, abortive) RNA to determine how PPi regulates initiation. Physiological [PPi] makes uridine incorporation and some other initiation steps significantly reversible. Physiological [PPi] reduces the fraction of RNAP-promoter complexes that productively initiate and the rate of RNA synthesis per productive complex, while increasing the fraction of complexes that abortively initiate, affecting abortive rates, and shifting the abortive-product distribution to shorter RNAs. Pyrophosphorolysis rates for some initiation complexes are orders of magnitude larger than for removal of the same nucleotide from elongation complexes because of the strong bias toward the pre-translocated state in initiation, and exhibit even stronger dependences on nucleotide identity (pyrimidine ≫ purine). Because cytoplasmic [PPi] is much higher in exponential-phase than stationary-phase cells, these [PPi] effects on initiation rates and amounts of RNA synthesis must be physiologically-relevant.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Escherichia coli , Iniciación de la Transcripción Genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleótidos/metabolismo , ARN/metabolismo , Transcripción Genética
4.
Biochemistry ; 59(16): 1565-1581, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32216369

RESUMEN

FRET (fluorescence resonance energy transfer) between far-upstream (-100) and downstream (+14) cyanine dyes (Cy3, Cy5) showed extensive bending and wrapping of λPR promoter DNA on Escherichia coli RNA polymerase (RNAP) in closed and open complexes (CC and OC, respectively). Here we determine the kinetics and mechanism of DNA bending and wrapping by FRET and of formation of RNAP contacts with -100 and +14 DNA by single-dye protein-induced fluorescence enhancement (PIFE). FRET and PIFE kinetics exhibit two phases: rapidly reversible steps forming a CC ensemble ({CC}) of four intermediates [initial (RPC), early (I1E), mid (I1M), and late (I1L)], followed by conversion of {CC} to OC via I1L. FRET and PIFE are first observed for I1E, not RPc. FRET and PIFE together reveal large-scale bending and wrapping of upstream and downstream DNA as RPC advances to I1E, decreasing the Cy3-Cy5 distance to ∼75 Å and making RNAP-DNA contacts at -100 and +14. We propose that far-upstream DNA wraps on the upper ß'-clamp while downstream DNA contacts the top of the ß-pincer in I1E. Converting I1E to I1M (∼1 s time scale) reduces FRET efficiency with little change in -100 or +14 PIFE, interpreted as clamp opening that moves far-upstream DNA (on ß') away from downstream DNA (on ß) to increase the Cy3-Cy5 distance by ∼14 Å. FRET increases greatly in converting I1M to I1L, indicating bending of downstream duplex DNA into the clamp and clamp closing to reduce the Cy3-Cy5 distance by ∼21 Å. In the subsequent rate-determining DNA-opening step, in which the clamp may also open, I1L is converted to the initial unstable OC (I2). Implications for facilitation of CC-to-OC isomerization by upstream DNA and upstream binding, DNA-bending transcription activators are discussed.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Carbocianinas/química , ADN/química , ADN/genética , ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Cinética , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...