Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Front Oncol ; 12: 1027036, 2022.
Article En | MEDLINE | ID: mdl-36387180

Background: Preoperative two-dimensional manual measurement of pulmonary artery diameter in a single-cut axial view computed tomography (CT) image is a commonly used non-invasive prediction method for pulmonary hypertension. However, the accuracy may be unreliable. Thus, this study aimed to evaluate the correlation of short-term surgical outcomes and pulmonary artery/aorta (PA/Ao) diameter ratio measured by automated three-dimensional (3D) segmentation in lung cancer patients who underwent thoracoscopic lobectomy. Materials and methods: We included 383 consecutive lung cancer patients with thin-slice CT images who underwent lobectomy at a single institute between January 1, 2011 and December 31, 2019. Automated 3D segmentation models were used for 3D vascular reconstruction and measurement of the average diameters of Ao and PA. Propensity-score matching incorporating age, Charlson comorbidity index, and lobectomy performed by uniportal VATS was used to compare clinical outcomes in patients with PA/Ao ratio ≥1 and those <1. Results: Our segmentation method measured 29 (7.57%) patients with a PA/Ao ratio ≥1. After propensity-score matching, a higher overall postoperative complication classified by the Clavien-Dindo classification (p = 0.016) were noted in patients with 3D PA/Ao diameter ratio ≥1 than those of <1. By multivariate logistic regression, patients with a 3D PA/Ao ratio ≥ 1 (p = 0.013) and tumor diameter > 3 cm (p = 0.002) both significantly predict the incidence of postoperative complications. Conclusions: Pulmonary artery/aorta diameter ratio ≥ 1 measured by automated 3D segmentation may predict postoperative complications in lung cancer patients who underwent lobectomy.

4.
Ann Surg Oncol ; 29(12): 7473-7482, 2022 Nov.
Article En | MEDLINE | ID: mdl-35789301

BACKGROUND: High-grade adenocarcinoma subtypes (micropapillary and solid) treated with sublobar resection have an unfavorable prognosis compared with those treated with lobectomy. We investigated the potential of incorporating solid attenuation component masks with deep learning in the prediction of high-grade components to optimize surgical strategy preoperatively. METHODS: A total of 502 patients with pathologically confirmed high-grade adenocarcinomas were retrospectively enrolled between 2016 and 2020. The SACs attention DL model was developed to apply solid-attenuation-component-like subregion masks (tumor area ≥ - 190 HU) to guide the DL model for predicting high-grade subtypes. The SACA-DL was assessed using 5-fold cross-validation and external validation in the training and testing sets, respectively. The performance, which was evaluated using the area under the curve (AUC), was compared between SACA-DL and the DL model without SACs attention (DLwoSACs), the prior radiomics model, or the model based on the consolidation/tumor (C/T) diameter ratio. RESULTS: We classified 313 and 189 patients into training and testing cohorts, respectively. The SACA-DL achieved an AUC of 0.91 for the cross-validation, which was significantly superior to those of the DLwoSACs (AUC = 0.88; P = 0.02), prior radiomics model (AUC = 0.85; P = 0.004), and C/T ratio (AUC = 0.84; P = 0.002). An AUC of 0.93 was achieved for external validation in the SACA-DL and was significantly better than those of the DLwoSACs (AUC = 0.89; P = 0.04), prior radiomics model (AUC = 0.85; P < 0.001), and C/T ratio (AUC = 0.85; P < 0.001). CONCLUSIONS: The combination of solid-attenuation-component-like subregion masks with the DL model is a promising approach for the preoperative prediction of high-grade adenocarcinoma subtypes.


Adenocarcinoma of Lung , Adenocarcinoma , Deep Learning , Lung Neoplasms , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Adenocarcinoma/surgery , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Attention , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Retrospective Studies , Tomography, X-Ray Computed/methods
5.
Sci Rep ; 12(1): 7932, 2022 05 13.
Article En | MEDLINE | ID: mdl-35562370

In the registration of medical images, nonrigid registration targets, images with large displacement caused by different postures of the human body, and frequent variations in image intensity due to physiological phenomena are substantial problems that make medical images less suitable for intensity-based image registration modes. These problems also greatly increase the difficulty and complexity of feature detection and matching for feature-based image registration modes. This research introduces an automatic image registration algorithm for infrared medical images that offers the following benefits: effective detection of feature points in flat regions (cold patterns) that appear due to changes in the human body's thermal patterns, improved mismatch removal through coherent spatial mapping for improved feature point matching, and large-displacement optical flow for optimal transformation. This method was compared with various classical gold standard image registration methods to evaluate its performance. The models were compared for the three key steps of the registration process-feature detection, feature point matching, and image transformation-and the results are presented visually and quantitatively. The results demonstrate that the proposed method outperforms existing methods in all tasks, including in terms of the features detected, uniformity of feature points, matching accuracy, and control point sparsity, and achieves optimal image transformation. The performance of the proposed method with four common image types was also evaluated, and the results verify that the proposed method has a high degree of stability and can effectively register medical images under a variety of conditions.


Algorithms , Humans
6.
Diagnostics (Basel) ; 12(4)2022 Apr 12.
Article En | MEDLINE | ID: mdl-35454015

Pulmonary hypertension should be preoperatively evaluated for optimal surgical planning to reduce surgical risk in lung cancer patients. Preoperative measurement of vascular diameter in computed tomography (CT) images is a noninvasive prediction method for pulmonary hypertension. However, the current estimation method, 2D manual arterial diameter measurement, may yield inaccurate results owing to low tissue contrast in non-contrast-enhanced CT (NECT). Furthermore, it provides an incomplete evaluation by measuring only the diameter of the arteries rather than the volume. To provide a more complete and accurate estimation, this study proposed a novel two-stage deep learning (DL) model for 3D aortic and pulmonary artery segmentation in NECT. In the first stage, a DL model was constructed to enhance the contrast of NECT; in the second stage, two DL models then applied the enhanced images for aorta and pulmonary artery segmentation. Overall, 179 patients were divided into contrast enhancement model (n = 59), segmentation model (n = 120), and testing (n = 20) groups. The performance of the proposed model was evaluated using Dice similarity coefficient (DSC). The proposed model could achieve 0.97 ± 0.66 and 0.93 ± 0.16 DSC for aortic and pulmonary artery segmentation, respectively. The proposed model may provide 3D diameter information of the arteries before surgery, facilitating the estimation of pulmonary hypertension and supporting preoperative surgical method selection based on the predicted surgical risks.

7.
Interact Cardiovasc Thorac Surg ; 34(3): 369-377, 2022 02 21.
Article En | MEDLINE | ID: mdl-34648631

OBJECTIVES: Solitary pulmonary capillary haemangioma (SPCH) is a benign lung tumour that presents as ground-glass nodules on computed tomography (CT) images and mimics lepidic-predominant adenocarcinoma. This study aimed to establish a discriminant model using a radiomic feature analysis to distinguish SPCH from lepidic-predominant adenocarcinoma. METHODS: In the adenocarcinoma group, all tumours were of the lepidic-predominant subtype with high purity (>70%). A classification model was proposed based on a two-level decision tree and 26 radiomic features extracted from each segmented lesion. For comparison, a baseline model was built with the same 26 features using a support vector machine as the classifier. Both models were assessed by the leave-one-out cross-validation method. RESULTS: This study included 13 and 49 patients who underwent complete resection for SPCH and adenocarcinoma, respectively. Two sets of features were identified for discrimination between the 2 different histology types. The first set included 2 principal components corresponding to the 2 largest eigenvalues for the root node of the two-level decision tree. The second set comprised 4 selected radiomic features. The area under the receiver operating characteristic curve, accuracy, sensitivity, specificity were 0.954, 91.9%, 92.3% and 91.8% in the proposed classification model, and were 0.805, 85.5%, 61.5% and 91.8% in the baseline model, respectively. The proposed classification model significantly outperformed the baseline model (P < 0.05). CONCLUSIONS: The proposed model could differentiate the 2 different histology types on CT images, and this may help surgeons to preoperatively discriminate SPCH from adenocarcinoma.


Adenocarcinoma of Lung , Adenocarcinoma , Hemangioma, Capillary , Lung Neoplasms , Adenocarcinoma/pathology , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Humans , Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Retrospective Studies
8.
Ann Thorac Surg ; 114(3): 999-1006, 2022 09.
Article En | MEDLINE | ID: mdl-34454902

BACKGROUND: We aimed to establish a radiomic prediction model for tumor spread through air spaces (STAS) in lung adenocarcinoma using radiomic values from high-grade subtypes (solid and micropapillary). METHODS: We retrospectively reviewed 327 patients with lung adenocarcinoma from 2 institutions (cohort 1: 227 patients; cohort 2: 100 patients) between March 2017 and March 2019. STAS was identified in 113 (34.6%) patients. A high-grade likelihood prediction model was constructed based on a historical cohort of 82 patients with "near-pure" pathologic subtype. The STAS prediction model based on the patch-wise mechanism identified the high-grade likelihood area for each voxel within the internal border of the tumor. STAS presence was indirectly predicted by a volume percentage threshold of the high-grade likelihood area. Performance was evaluated by receiver operating curve analysis with 10-repetition, 3-fold cross-validation in cohort 1, and was individually tested in cohort 2. RESULTS: Overall, 227 patients (STAS-positive: 77 [33.9%]) were enrolled for cross-validation (cohort 1) while 100 (STAS-positive: 36 [36.0%]) underwent individual testing (cohort 2). The gray level cooccurrence matrix (variance) and histogram (75th percentile) features were selected to construct the high-grade likelihood prediction model, which was used as the STAS prediction model. The proposed model achieved good performance in cohort 1 with an area under the curve, sensitivity, and specificity, of 81.44%, 86.75%, and 62.60%, respectively, and correspondingly, in cohort 2, they were 83.16%, 83.33%, and 63.90%, respectively. CONCLUSIONS: The proposed computed tomography-based radiomic prediction model could help guide preoperative prediction of STAS in early-stage lung adenocarcinoma and relevant surgeries.


Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/surgery , Humans , Lung Neoplasms/surgery , Neoplasm Invasiveness/pathology , Neoplasm Staging , Prognosis , Retrospective Studies
9.
Eur Radiol ; 31(7): 5127-5138, 2021 Jul.
Article En | MEDLINE | ID: mdl-33389033

OBJECTIVES: Near-pure lung adenocarcinoma (ADC) subtypes demonstrate strong stratification of radiomic values, providing basic information for pathological subtyping. We sought to predict the presence of high-grade (micropapillary and solid) components in lung ADCs using quantitative image analysis with near-pure radiomic values. METHODS: Overall, 103 patients with lung ADCs of various histological subtypes were enrolled for 10-repetition, 3-fold cross-validation (cohort 1); 55 were enrolled for testing (cohort 2). Histogram and textural features on computed tomography (CT) images were assessed based on the "near-pure" pathological subtype data. Patch-wise high-grade likelihood prediction was performed for each voxel within the tumour region. The presence of high-grade components was then determined based on a volume percentage threshold of the high-grade likelihood area. To compare with quantitative approaches, consolidation/tumour (C/T) ratio was evaluated on CT images; we applied radiological invasiveness (C/T ratio > 0.5) for the prediction. RESULTS: In cohort 1, patch-wise prediction, combined model (C/T ratio and patch-wise prediction), whole-lesion-based prediction (using only the "near-pure"-based prediction model), and radiological invasiveness achieved a sensitivity and specificity of 88.00 ± 2.33% and 75.75 ± 2.82%, 90.00 ± 0.00%, and 77.12 ± 2.67%, 66.67% and 90.41%, and 90.00% and 45.21%, respectively. The sensitivity and specificity, respectively, for cohort 2 were 100.0% and 95.35% using patch-wise prediction, 100.0% and 95.35% using combined model, 75.00% and 95.35% using whole-lesion-based prediction, and 100.0% and 69.77% using radiological invasiveness. CONCLUSION: Using near-pure radiomic features and patch-wise image analysis demonstrated high levels of sensitivity and moderate levels of specificity for high-grade ADC subtype-detecting. KEY POINTS: • The radiomic values extracted from lung adenocarcinoma with "near-pure" histological subtypes provide useful information for high-grade (micropapillary and solid) components detection. • Using near-pure radiomic features and patch-wise image analysis, high-grade components of lung adenocarcinoma can be predicted with high sensitivity and moderate specificity. • Using near-pure radiomic features and patch-wise image analysis has potential role in facilitating the prediction of the presence of high-grade components in lung adenocarcinoma prior to surgical resection.


Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed
10.
Sci Rep ; 9(1): 5557, 2019 04 03.
Article En | MEDLINE | ID: mdl-30944361

Drosophila and human cardiac genes are very similar. Biological parametric studies on drosophila cardiac have improved our understanding of human cardiovascular disease. Drosophila cardiac consist of five circular chambers: a conical chamber (CC) and four ostia sections (O1-O4). Due to noise and grayscale discontinuity on optical coherence tomography (OCT) images, previous researches used manual counting or M-mode to analyze heartbeats, which are inefficient and time-consuming. An automated drosophila heartbeat counting algorithm based on the chamber segmentation is developed for OCT in this study. This algorithm has two parts: automated chamber segmentation and heartbeat counting. In addition, this study proposes a principal components analysis (PCA)-based supervised learning method for training the chamber contours to make chamber segmentation more accurate. The mean distances between the conical, second and third chambers attained by the proposed algorithm and the corresponding manually delineated boundaries defined by two experts were 1.26 ± 0.25, 1.47 ± 1.25 and 0.84 ± 0.60 (pixels), respectively. The area overlap similarities were 0.83 ± 0.09, 0.75 ± 0.11 and 0.74 ± 0.12 (pixels), respectively. The average calculated heart rates of two-week and six-week drosophila were about 4.77 beats/s and 4.73 beats/s, respectively, which was consistent with the results of manual counting.


Drosophila , Heart Rate , Image Processing, Computer-Assisted/methods , Tomography, Optical Coherence/methods , Algorithms , Animals , Heart/diagnostic imaging , Image Processing, Computer-Assisted/statistics & numerical data , Principal Component Analysis
11.
Lung Cancer ; 119: 56-63, 2018 05.
Article En | MEDLINE | ID: mdl-29656753

INTRODUCTION: Histological subtypes of lung adenocarcinomas (ADCs) classified by the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) system have been investigated using radiomic approaches. However, the results have had limitations since <80% of invasive lung ADCs were heterogeneous, with two or more subtypes. To reduce the influence of heterogeneity during radiomic analysis, computed tomography (CT) images of lung ADCs with near-pure ADC subtypes were analyzed to extract representative radiomic features of different subtypes. METHODS: We enrolled 95 patients who underwent complete resection for lung ADC and a pathological diagnosis of a "near-pure" (≥70%) IASLC/ATS/ERS histological subtype. Conventional histogram/morphological features and complex radiomic features (grey-level-based statistical features and component variance-based features) of thin-cut CT data of tumor regions were analyzed. A prediction model based on leave-one-out cross-validation (LOOCV) and logistic regression (LR) was used to classify all five subtypes and three pathologic grades (lepidic, acinar/papillary, micropapillary/solid) of ADCs. The validation was performed using 36 near-pure ADCs in a later cohort. RESULTS: A total of 31 lepidic, 14 papillary, 32 acinar, 10 micropapillary, and 8 solid ADCs were analyzed. With 21 conventional and complex radiomic features, for 5 subtypes and 3 pathological grades, the prediction models achieved accuracy rates of 84.2% (80/95) and 91.6% (87/95), respectively, while accuracy was 71.6% and 85.3%, respectively, if only conventional features were used. The accuracy rate for the validation set (n = 36) was 83.3% (30/36) and 94.4% (34/36) in 5 subtypes and 3 pathological grades, respectively, using conventional and complex features, while it was 66.7% and 77.8% only using conventional features, respectively. CONCLUSION: Lung ADC with high purity pathological subtypes demonstrates strong stratification of radiomic values, which provide basic information for accurate pathological subtyping and image parcellation of tumor sub-regions.


Adenocarcinoma of Lung/pathology , Lung Neoplasms/pathology , Lung/pathology , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/mortality , Cohort Studies , Europe , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnosis , Lung Neoplasms/mortality , Neoplasm Staging , Pneumonectomy , Retrospective Studies , Societies, Medical , Survival Analysis , Tomography, X-Ray Computed , United States
12.
Sci Rep ; 7: 39834, 2017 02 01.
Article En | MEDLINE | ID: mdl-28145474

Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images.

...