Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 156
1.
Eur J Pediatr ; 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38502322

The purpose of this study is to describe the morbidity and mortality of children during the entire COVID-19 pandemic. Age-disaggregated data of 108,003,741 cases and 560,426 deaths were collected from Canada, France, Germany, and Italy. The number of cases and deaths per million people per week, as well as case fatality rates (CFRs), were calculated for patients aged 0-14 and ≥ 15 years. During the first pandemic period in the four countries, starting from weeks 4 to 11 (in 2020) and ending at week 22 (in 2021), the number of deaths per million people per week and the CFRs in the ≥ 15 years age group were 500 to 2513 and 442 to 1662 times greater, respectively, than those in the 0-14 years age group. The number of deaths per million people per week was significantly lower in the first pandemic period than in the second pandemic period, which started at week 23 (2021) and ended from week 22 to week 25 (2023). During the second pandemic period in the four countries, the disparities between the ≥ 15 years and 0-14 years age groups decreased, and the number of deaths per million people per week in the ≥ 15 years age group was 76 to 180 times greater than it in the 0-14 years age group. CONCLUSION:  Children aged 0-14 years had a far lower mortality risk during the entire COVID-19 pandemic, and the impact of viral variants and/or vaccination on the mortality rate is difficult to distinguish. WHAT IS KNOWN: • Although extensive studies have focused on COVID-19-induced mortality, most of them are provisional reports performed during the unfolding of the pandemic and provide imprecise conclusion. WHAT IS NEW: • We described the morbidity and mortality for children aged 0-14 years using complete survey data recorded during the entire COVID-19 pandemic. • The number of deaths per million people per week was far lower in children aged 0-14 years, while the number of deaths per million people per week in children aged 0-14 years was significantly higher in the second period which starting from week 23 (2021) and ending at week 22 to 25 (2023) than in the first period which starting from week 1 to 11 (2020) and ending at week 22 (2021).

2.
J Med Chem ; 67(6): 5075-5092, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38483150

Aberrantly elevated adenosine in the tumor microenvironment exerts its immunosuppressive functions through adenosine receptors A2AR and A2BR. Antagonism of A2AR and A2BR has the potential to suppress tumor growth. Herein, we report a systemic assessment of the effects of an indole modification at position 4, 5, 6, or 7 on both A2AR/A2BR activity and selectivity of novel 2-aminopyrimidine compounds. Substituting indole at the 4-/5-position produced potent A2AR/A2BR dual antagonism, whereas the 6-position of indole substitution gave highly selective A2BR antagonism. Molecular dynamics simulation showed that the 5-cyano compound 7ai had a lower binding free energy than the 6-cyano compound 7aj due to water-bridged hydrogen bond interactions with E169 or F168 in A2AR. Of note, dual A2AR/A2BR antagonism by compound 7ai can profoundly promote the activation and cytotoxic function of T cells. This work provided a strategy for obtaining novel dual A2AR/A2BR or A2BR antagonists by fine-tuning structural modification.


Pyrimidines , Receptor, Adenosine A2A , Receptor, Adenosine A2B , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2B/metabolism , Adenosine/metabolism , Indoles
3.
Int J Cancer ; 155(1): 93-103, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38446987

The genetic predisposition to lymphoma is not fully understood. We identified 13 lymphoma-cancer families (2011-2021), in which 27 individuals developed lymphomas and 26 individuals had cancers. Notably, male is the predominant gender in lymphoma patients, whereas female is the predominant gender in cancer patients (p = .019; OR = 4.72, 95% CI, 1.30-14.33). We collected samples from 18 lymphoma patients, and detected germline variants through exome sequencing. We found that germline protein truncating variants (PTVs) were enriched in DNA repair and immune genes. Totally, we identified 31 heterozygous germline mutations (including 12 PTVs) of 25 DNA repair genes and 19 heterozygous germline variants (including 7 PTVs) of 14 immune genes. PTVs of ATM and PNKP were found in two families, respectively. We performed whole genome sequencing of diffuse large B cell lymphomas (DLBCLs), translocations at IGH locus and activation of oncogenes (BCL6 and MYC) were verified, and homologous recombination deficiency was detected. In DLBCLs with germline PTVs of ATM, deletion and insertion in CD58 were further revealed. Thus, in lymphoma-cancer families, we identified germline defects of both DNA repair and immune genes in lymphoma patients.


DNA Repair , Genetic Predisposition to Disease , Germ-Line Mutation , Lymphoma, Large B-Cell, Diffuse , Humans , Male , Female , DNA Repair/genetics , Middle Aged , Adult , Lymphoma, Large B-Cell, Diffuse/genetics , Aged , Lymphoma/genetics , Exome Sequencing , Young Adult , Pedigree , Ataxia Telangiectasia Mutated Proteins/genetics , Adolescent
4.
Clin Rheumatol ; 43(4): 1335-1352, 2024 Apr.
Article En | MEDLINE | ID: mdl-38376769

INTRODUCTION: Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by inflammatory infiltration, and dysfunction of the salivary and lacrimal glands. This research aimed to explore the disease pathogenesis and improve the diagnosis and treatment of pSS by mining inflammation-associated biomarkers. METHODS: Five pSS-related datasets were retrieved from the Gene Expression Omnibus (GEO) database. Inflammation-associated biomarkers were determined by the least absolute shrinkage and selection operator (LASSO) and support vector machines recursive feature elimination (SVM-RFE). Single sample gene set enrichment analysis (ssGSEA) was implemented to profile the infiltration levels of immune cells. Real-time quantitative PCR (RT-qPCR) verified the expression of biomarkers in clinical samples. RESULTS: Four genes (LY6E, EIF2AK2, IL15, and CXCL10) were screened as inflammation-associated biomarkers in pSS, the predictive performance of which were determined among three pSS-related datasets (AUC > 0.7). Functional enrichment results suggested that the biomarkers were involved in immune and inflammation-related pathways. Immune infiltration analysis revealed that biomarkers were notably connected with type 2 T helper cells, regulatory T cells which were significantly expressed between pSS and control. TESTOSTERONE and CYCLOSPORINE were predicted to take effect by targeting CXCL10 and IL15 in pSS, respectively. CONCLUSION: Four inflammation-associated biomarkers (LY6E, EIF2AK2, IL15, and CXCL10) were explored, and the underlying regulatory mechanisms and targeted drugs associated with these biomarkers were preliminarily investigated according to a series of bioinformatics methods based on the online datasets of pSS, which provided a reference for understanding the pathogenesis of pSS. Key Points • Inflammation-associated biomarkers (LY6E, EIF2AK2, IL15, and CXCL10) were firstly identified in Sjögren's syndrome based on LASSO and SVM-RFE analyses. • CXCL10, EIF2AK2 and LY6E were prominently positively correlated with immature B cells, while IL15 were significantly negatively correlated with memory B cells in Sjögren's syndrome. • LY6E, EIF2AK2, IL15, and CXCL10 were significantly more highly expressed in clinical Sjögren's syndrome samples compared to healthy control samples, which was consistent with the analysis results of the GEO database. •LY6E, EIF2AK2, IL15, and CXCL10 might be used as the biomarkers for the treatment and diagnosis of Sjögren's syndrome.


Autoimmune Diseases , Sjogren's Syndrome , Humans , Sjogren's Syndrome/pathology , Interleukin-15 , Biomarkers/metabolism , Inflammation
5.
J Hazard Mater ; 469: 133882, 2024 May 05.
Article En | MEDLINE | ID: mdl-38412646

Hazardous mine tailings (HMTs) dam failures can cause devastation to the ecology environment, people's lives and property, which require expensive and complicated remediation engineering systematacially. A cheap and sustainable inertization disposal is proposed for de-risking HMTs without any carbon emissions, stabilizing hazardous heavy metal cations within safety minerals and also sequestering CO2 in the process, simultaneously. Herein, lead-zinc tailings as target HMTs were inertized by using waste rice husk ashes (RHAs) and carbide slag (CS) with a certain ratio, and lead-zinc tailings hardened pastes (LZTHPs) were investigated based on the experimental performance, analytical characteristics, and simulation diffusion methods, to deeply unveil the minerals transformation mechanisms and long-term stability from the cation perspectives. Results revealed that LZTHPs' compressive strength ranged from 1.04-4.73 MPa and leaching toxicity concentrations of Pb, Zn, Cr, and Cd reached 0.03 mg/L, 1.78 mg/L, 0.01 mg/L, and 0.01 mg/L, respectively. C-S-H gels (Type I and II), cation hydroxides and CO2 mineralization carbonates were the hydrates in LZTHPs. Pb (86%), Zn (78%), Cr (76%), and Cd (65%) were immobilized as residual state, and CO2 mineralization capacity was 0.16 kg/kg. The diffusion coefficient of Pb, Zn, Cr, and Cd below 4.48 × 10-10 cm2/s, 1.39 × 10-10 cm2/s, 4.72 × 10-10 cm2/s, and 0.30 × 10-12 cm2/s, which would be sufficient in most scenarios to adequately stabilize tailings. Diffusion control is the leaching mechanism of cations. After 100 years of simulation diffusion, the diffusion areas of Pb, Zn, Cr, and Cd are 1.33 × 10-3∼1.49 cm2, 2.47 × 10-4∼0.48 cm2, 2.47-8.61 × 10-4 cm2, and 1.49 cm2, respectively, and the environmental impact of LZTHPs was negligible. This study provides promising solutions for alleviating hazardous tailings dangerous, achieving sustainable development with zero-carbon emission, implying the concept of eliminating waste by waste, synchronously.

6.
Medicine (Baltimore) ; 103(2): e35303, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38215087

To explore the risk factors and develop a nomogram to predict Double J stent encrustation incidence. The general demographic characteristics and underlying risk factors of 248 patients with upper urinary tract calculus who underwent endoscopic lithotripsy and Double J stenting at the Fifth Affiliated Hospital of Sun Yat-Sen University between January 1st, 2018 and January 1st, 2023 were retrospectively analyzed. Among them,173 patients were randomly selected to form the development cohort. A multivariate logistic regression model was employed to identify the independent risk factors associated with Double J stent encrustation, and a nomogram was developed for predicting its occurrence. Additionally, 75 patients were randomly selected to form the validation cohort to validate the nomogram. Multivariate logistic regression analysis revealed that several factors were significantly associated with Double J stent encrustation: indwelling time (odds ratio [OR]1.051; 95% confidence interval [CI] 1.030-1.073, P < .001), urine PH (OR 2.198; 95% CI 1.061-4.539, P = .033), fasting blood glucose (OR 1.590; 95% CI 1.300-1.943, P < .001), and total cholesterol (OR 2.676; 95% CI 1.551-4618, P < .001).Based on these findings, A nomogram was developed to predict the occurrence of Double J stent encrustation. The nomogram demonstrated good performance with an area under the curve of 0.870 and 0.862 in the development and validation cohorts, respectively. Furthermore, the calibration curve indicated a well-fitted model. We constructed and validated an accessible nomogram to assist urologists in evaluating the risk factors associated with Double J stent encrustation and predicting its likelihood.


Nomograms , Stents , Humans , Retrospective Studies , Case-Control Studies , Stents/adverse effects , Risk Assessment
7.
Fitoterapia ; 172: 105721, 2024 Jan.
Article En | MEDLINE | ID: mdl-37931718

Five new biflavonoids, diphybiflavonoids A - E (1-5), were isolated from the roots and rhizomes of Diphylleia sinensis. Their structures were elucidated by extensive spectroscopic data, including UV, IR, HR-ESI-MS and 2D NMR. Their absolute configurations were determined by ECD spectra. All isolated compounds were evaluated for acetylcholinesterase (AChE) inhibitory activity. Compounds 1-4 exhibited the potent AChE inhibitory activities with IC50 values of 1.62, 2.10, 2.08, and 5.15 µM, respectively. The preliminary structure-activity relationship study indicated that the connection mode (C2-O-C4'''/C3-O-C3''' or C2-O-C3'''/C3-O-C4''') of biflavonoid subunits, and 3-hydroxy group of flavonol subunit were important structural factors for AChE inhibitory activity. Biflavonoids, containing a C2-O-C4'''/C3-O-C3''' or C2-O-C3'''/C3-O-C4''' linkage, can be a potentially useful platform for development of cholinesterase inhibitors.


Berberidaceae , Biflavonoids , Biflavonoids/pharmacology , Molecular Structure , Acetylcholinesterase/analysis , Acetylcholinesterase/metabolism , Structure-Activity Relationship , Plant Roots/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry
8.
J Chem Inf Model ; 64(7): 2205-2220, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-37319418

Predicting protein-ligand binding affinity is a central issue in drug design. Various deep learning models have been published in recent years, where many of them rely on 3D protein-ligand complex structures as input and tend to focus on the single task of reproducing binding affinity. In this study, we have developed a graph neural network model called PLANET (Protein-Ligand Affinity prediction NETwork). This model takes the graph-represented 3D structure of the binding pocket on the target protein and the 2D chemical structure of the ligand molecule as input. It was trained through a multi-objective process with three related tasks, including deriving the protein-ligand binding affinity, protein-ligand contact map, and ligand distance matrix. Besides the protein-ligand complexes with known binding affinity data retrieved from the PDBbind database, a large number of non-binder decoys were also added to the training data for deriving the final model of PLANET. When tested on the CASF-2016 benchmark, PLANET exhibited a scoring power comparable to the best result yielded by other deep learning models as well as a reasonable ranking power and docking power. In virtual screening trials conducted on the DUD-E benchmark, PLANET's performance was notably better than several deep learning and machine learning models. As on the LIT-PCBA benchmark, PLANET achieved comparable accuracy as the conventional docking program Glide, but it only spent less than 1% of Glide's computation time to finish the same job because PLANET did not need exhaustive conformational sampling. Considering the decent accuracy and efficiency of PLANET in binding affinity prediction, it may become a useful tool for conducting large-scale virtual screening.


Planets , Proteins , Ligands , Proteins/chemistry , Protein Binding , Neural Networks, Computer , Databases, Protein , Molecular Docking Simulation
9.
J Magn Reson Imaging ; 59(3): 1083-1092, 2024 Mar.
Article En | MEDLINE | ID: mdl-37367938

BACKGROUND: Conventional MRI staging can be challenging in the preoperative assessment of rectal cancer. Deep learning methods based on MRI have shown promise in cancer diagnosis and prognostication. However, the value of deep learning in rectal cancer T-staging is unclear. PURPOSE: To develop a deep learning model based on preoperative multiparametric MRI for evaluation of rectal cancer and to investigate its potential to improve T-staging accuracy. STUDY TYPE: Retrospective. POPULATION: After cross-validation, 260 patients (123 with T-stage T1-2 and 134 with T-stage T3-4) with histopathologically confirmed rectal cancer were randomly divided to the training (N = 208) and test sets (N = 52). FIELD STRENGTH/SEQUENCE: 3.0 T/Dynamic contrast enhanced (DCE), T2-weighted imaging (T2W), and diffusion-weighted imaging (DWI). ASSESSMENT: The deep learning (DL) model of multiparametric (DCE, T2W, and DWI) convolutional neural network were constructed for evaluating preoperative diagnosis. The pathological findings served as the reference standard for T-stage. For comparison, the single parameter DL-model, a logistic regression model composed of clinical features and subjective assessment of radiologists were used. STATISTICAL TESTS: The receiver operating characteristic curve (ROC) was used to evaluate the models, the Fleiss' kappa for the intercorrelation coefficients, and DeLong test for compare the diagnostic performance of ROCs. P-values less than 0.05 were considered statistically significant. RESULTS: The Area Under Curve (AUC) of the multiparametric DL-model was 0.854, which was significantly higher than the radiologist's assessment (AUC = 0.678), clinical model (AUC = 0.747), and the single parameter DL-models including T2W-model (AUC = 0.735), DWI-model (AUC = 0.759), and DCE-model (AUC = 0.789). DATA CONCLUSION: In the evaluation of rectal cancer patients, the proposed multiparametric DL-model outperformed the radiologist's assessment, the clinical model as well as the single parameter models. The multiparametric DL-model has the potential to assist clinicians by providing more reliable and precise preoperative T staging diagnosis. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Deep Learning , Multiparametric Magnetic Resonance Imaging , Rectal Neoplasms , Humans , Magnetic Resonance Imaging/methods , Multiparametric Magnetic Resonance Imaging/methods , Retrospective Studies
10.
J Ethnopharmacol ; 321: 117202, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-37742878

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba L. is a well-known and highly regarded resource in Chinese traditional medicine due to its effectiveness and safety. Ginkgo Folium, the leaf of Ginkgo biloba L., contains biologically active constituents with diverse pharmacological activities. Recent studies have shown promising antitumor effects of the bioactive constituents found in Ginkgo Folium against various types of cancer cells, highlighting its potential as a natural source of antitumor agents. Further research is needed to elucidate the underlying mechanisms and optimize its therapeutic potential. AIM OF THE REVIEW: To provide a detailed understanding of the pharmacological activities of Ginkgo Folium and its potential therapeutic benefits for cancer patients. MATERIALS AND METHODS: In this study, we conducted a thorough and systematic search of multiple online databases, including PubMed, Web of Science, Medline, using relevant keywords such as "Ginkgo Folium," "flavonoids," "terpenoids," "Ginkgo Folium extracts," and "antitumor" to cover a broad range of studies that could inform our review. Additionally, we followed a rigorous selection process to ensure that the studies included in our review met the predetermined inclusion criteria. RESULTS: The active constituents of Ginkgo Folium primarily consist of flavonoids and terpenoids, with quercetin, kaempferol, isorhamnetin, ginkgolides, and bilobalide being the major compounds. These active constituents exert their antitumor effects through crucial biological events such as apoptosis, cell cycle arrest, autophagy, and inhibition of invasion and metastasis via modulating diverse signaling pathways. During the process of apoptosis, active constituents primarily exert their effects by modulating the caspase-8 mediated death receptor pathway and caspase-9 mediated mitochondrial pathway via regulating specific signaling pathways. Furthermore, by modulating multiple signaling pathways, active constituents effectively induce G1, G0/G1, G2, and G2/M phase arrest. Among these, the pathways associated with G2/M phase arrest are particularly extensive, with the cyclin-dependent kinases (CDKs) being most involved. Moreover, active constituents primarily mediate autophagy by modulating certain inflammatory factors and stressors, facilitating the fusion stage between autophagosomes and lysosomes. Additionally, through the modulation of specific chemokines and matrix metalloproteinases, active constituents effectively inhibit the processes of epithelial-mesenchymal transition (EMT) and angiogenesis, exerting a significant impact on cellular invasion and migration. Synergistic effects are observed among the active constituents, particularly quercetin and kaempferol. CONCLUSION: Active components derived from Ginkgo Folium demonstrate a comprehensive antitumor effect across various levels and pathways, presenting compelling evidence for their potential in new drug development. However, in order to facilitate their broad and adaptable clinical application, further extensive experimental investigations are required to thoroughly explore their efficacy, safety, and underlying mechanisms of action.


Ginkgo biloba , Quercetin , Humans , Quercetin/pharmacology , Kaempferols , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Flavonoids
11.
Med Res Rev ; 44(2): 707-737, 2024 Mar.
Article En | MEDLINE | ID: mdl-37983840

The B-cell lymphoma-2 (BCL-2) family of proteins plays a crucial role in the regulation of apoptosis, offering a dual mechanism for its control. Numerous studies have established a strong association between gene disorders of these proteins and the proliferation of diverse cancer cell types. Consequently, the identification and development of drugs targeting BCL-2 family proteins have emerged as a prominent area in antitumor therapy. Over the last two decades, several small-molecules have been designed to modulate the protein-protein interactions between anti- and proapoptotic BCL-2 proteins, effectively suppressing tumor growth and metastasis in vivo. The primary focus of research has been on developing BCL-2 homology 3 (BH3) mimetics to target antiapoptotic BCL-2 proteins, thereby competitively releasing proapoptotic BCL-2 proteins and restoring the blocked intrinsic apoptotic program. Additionally, for proapoptotic BCL-2 proteins, exogenous small molecules have been explored to activate cell apoptosis by directly interacting with executioner proteins such as BCL-2-associated X protein (BAX) or BCL-2 homologous antagonist/killer protein (BAK). In this comprehensive review, we summarize the inhibitors and activators (sensitizers) of BCL-2 family proteins developed over the past decades, highlighting their discovery, optimization, preclinical and clinical status, and providing an overall landscape of drug development targeting these proteins for therapeutic purposes.


Neoplasms , Proto-Oncogene Proteins , Humans , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/pharmacology , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/pharmacology , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Neoplasms/drug therapy
12.
Sci Rep ; 13(1): 21289, 2023 Dec 02.
Article En | MEDLINE | ID: mdl-38042874

To explore the microstructure formation mechanism of 42CrMo steel under the strengthening of ultrasonic surface rolling process (USRP), the combination of theoretical analysis and experiment was used to conduct in-depth research on USRP. Firstly, according to contact mechanics and Hertz contact theory, the calculation model of contact stress distribution and elastoplastic strain between the rolling ball and the part during USRP is obtained. Secondly, the USRP processing test was carried out by single-factor experimental design method, and the microstructure of 42CrMo steel after USRP was analyzed by LEXT OLS5100 3D laser surface topography instrument and VEGA3 tungsten filament scanning electron microscopy, which found that with an increase in static pressure, residual stress and plastic strain gradually increase, the hardness firstly increases and then decreases, while surface roughness exhibits an initial decrease followed by an increase. The results show that USRP produces violent plastic deformation inside the material under the superposition of high-frequency impact and static pressure, at the same time, it refines the grains, so as to improve the surface performance of the part and improve its fatigue resistance.

14.
Front Cell Infect Microbiol ; 13: 1107990, 2023.
Article En | MEDLINE | ID: mdl-38029234

Objective: To evaluate the efficacy of targeted nanopore sequencing technology for the detection of Mycobacterium tuberculosis(M.tb.) in bronchoalveolar lavage fluid(BALF) specimens. Methods: A prospective study was used to select 58 patients with suspected pulmonary tuberculosis(PTB) at Henan Chest Hospital from January to October 2022 for bronchoscopy, and BALF specimens were subjected to acid-fast bacilli(AFB) smear, Mycobacterium tuberculosis MGIT960 liquid culture, Gene Xpert MTB/RIF (Xpert MTB/RIF) and targeted nanopore sequencing (TNS) for the detection of M.tb., comparing the differences in the positive rates of the four methods for the detection of patients with different classifications. Results: Among 58 patients with suspected pulmonary tuberculosis, there were 48 patients with a final diagnosis of pulmonary tuberculosis. Using the clinical composite diagnosis as the reference gold standard, the sensitivity of AFB smear were 27.1% (95% CI: 15.3-41.8); for M.tb culture were 39.6% (95% CI: 25.8-54.7); for Xpert MTB/RIF were 56.2% (95% CI: 41.2-70.5); for TNS were 89.6% (95% CI: 77.3-96.5). Using BALF specimens Xpert MTB/RIF and/or M.tb. culture as the reference standard, TNS showed 100% (30/30) sensitivity. The sensitivity of NGS for pulmonary tuberculosis diagnosis was significantly higher than Xpert MTB/RIF, M.tb. culture, and AFB smear. Besides, P values of <0.05 were considered statistically significant. Conclusion: Using a clinical composite reference standard as a reference gold standard, TNS has the highest sensitivity and consistency with clinical diagnosis, and can rapidly and efficiently detect PTB in BALF specimens, which can aid to improve the early diagnosis of suspected tuberculosis patients.


Mycobacterium tuberculosis , Nanopore Sequencing , Tuberculosis, Pulmonary , Humans , Mycobacterium tuberculosis/genetics , Bronchoalveolar Lavage Fluid/microbiology , Prospective Studies , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Sensitivity and Specificity , Sputum/microbiology
15.
ACS Appl Mater Interfaces ; 15(47): 54266-54279, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-37969079

Supramolecular macrocycles with intrinsic cavities have been widely explored as containers to fabricate versatile functional materials via specific host-guest recognitions. However, relatively few studies have focused on the modulation of guest reactivity within a macrocyclic cavity. Here, we demonstrate the confinement effect of pillar[5]arene with an electron-rich and precise cavity that can dramatically enhance guest photoactivity and nitric oxide (NO) generation upon visible light irradiation. Mechanism studies reveal that it is achieved through increasing the ground state nitro-aromatic torsion angle, suppressing the intersystem crossing relaxation path of the S1 state, and accelerating the isomerization reaction path of guest molecules. This NO-generating system displays broad-spectrum antibacterial, biofilm inhibition, and dispersal activities. Moreover, it can accelerate the healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in vivo.


Calixarenes , Methicillin-Resistant Staphylococcus aureus , Nitric Oxide/pharmacology , Calixarenes/pharmacology , Anti-Bacterial Agents/pharmacology
16.
Chin J Cancer Res ; 35(5): 536-549, 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37969960

Objective: To explore the application of genetic abnormalities in the diagnosis of angioimmunoblastic T-cell lymphoma (AITL) and the reliable pathological prognostic factors. Methods: This study included 53 AITL cases, which were reviewed for morphological patterns, immunophenotypes, presence of Hodgkin and Reed-Sternberg (HRS)-like cells, and co-occurrence of B cell proliferation. The Epstein-Barr virus (EBV)-positive cells in tissues were counted, and cases were classified into "EBV encoded RNA (EBER) high-density" group if >50/HPF. Targeted exome sequencing was performed. Results: Mutation data can assist AITL diagnosis: 1) with considerable HRS-like cells (20 cases): RHOA mutated in 14 cases (IDH2 co-mutated in 3 cases, 4 cases with rare RHOA mutation), TET2 was mutated in 5 cases (1 case co-mutated with DNMT3A), and DNMT3A mutated in 1 case; 2) accompanied with B cell lymphoma (7 cases): RHOA mutated in 4 cases (1 case had IDH2 mutation), TET2 mutated in 2 cases and DNMT3A mutated in 1 case; 3) mimic peripheral T cell lymphoma, not otherwise specified (5 cases): RHOA mutated in 2 cases (IDH2 co-mutated in 1 case), TET2 mutated in 3 cases, and DNMT3A mutated in 1 case; 4) pattern 1 (1 case), RHOA and TET2 co-mutated. Besides RHOAG17V (30/35), rare variant included RHOAK18N, RHOAR68H, RHOAC83Y, RHOAD120G and RHOAG17del, IDH2R172 co-mutated with IDH2M397V in one case. There were recurrent mutations of FAT3, PCLO and PIEZO1 and genes of epigenetic remodeling, T-cell activation, APC and PI3K/AKT pathway. EBER high-density independently indicated adverse overall survival and progression-free survival (P=0.046 and P=0.008, Kaplan-Meier/log-rank). Conclusions: Over half AITL cases might be confused in diagnosis for certain conditions without mutation data. Targeted exome sequencing with a comprehensive panel is crucial to detect both hot-spot and rare mutation variants for RHOA and IDH2 and other recurrent mutated genes in addition to TET2 and DNMT3A. EBER high-density independently indicated adverse survival.

17.
Neurosurg Rev ; 46(1): 305, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37982900

Treatment of blood blister-like aneurysms (BBAs) of the supraclinoid internal carotid artery (ICA) with flow diverters (FDs) has become widespread in recent years. However, ruptured blood blister-like aneurysm (BBA) of ICA treatment with flow diverter-assisted coil embolization (FDAC) remains controversial. Moreover, limited direct comparative studies have been conducted between the two treatment modalities, FDs and FDAC, for BBAs. The purpose of this study was to document our experience and evaluate the effectiveness and safety of FDAC. We conducted a retrospective analysis of clinical and radiological information from ten patients who experienced ruptured BBAs of the supraclinoid ICA at our center from January 2021 to February 2023. The technical details of FDAC for ruptured BBAs were described, and the technical steps were named "pipeline embolization device (PED)-Individualized shaping(microcatheter)-Semi deploying-Rivet(coils)-Massage(microwire)" as the PEISSERM technique. Clinical outcomes were assessed using the modified Rankin Scale (mRS), whereas radiological results were determined through angiography. A pooled analysis was implemented, incorporating data from literature sources that reported perioperative and long-term clinical and angiographic outcomes of ruptured BBAs treated with FD and FDAC strategies, along with our data. Data in our analysis pool were categorized into FD and FDAC strategy groups to explore the preferred treatment modalities for BBAs. The PEISSERM technique was utilized to treat ten patients, seven males, and three females, with an average age of 41.7 years. A single PED was deployed in conjunction with coils in all ten patients. All PEDs were documented to have good wall apposition. The immediate postoperative angiograms demonstrated Raymond grade I in ten aneurysms. Angiographic follow-up of nine patients at 4-25 months showed total occlusion of the aneurysms. At the most recent follow-up, the mRS scores of nine patients hinted at a good prognosis. Pooled analysis of 233 ICA-BBA cases of FD revealed a technical success rate of 91% [95% confidence interval (CI), 0.88 to 0.95], a rate of complete occlusion of 79% (95% CI, 0.73 to 0.84), a recurrence rate of 2% (95% CI, 0.00 to 0.04), a rebleed rate of 2% (95% CI, 0.00 to 0.04), and the perioperative stroke rate was 8% (95% CI, 0.04 to 0.11). The perioperative mortality was 4% (95% CI, 0.01 to 0.07). The long-term good clinical outcome rate was 85% (95% CI, 0.80 to 0.90). The mortality rate was 6% (95% CI, 0.03 to 0.09). Results from the subgroup analysis illustrated that the FDAC strategy for BBAs had a significantly higher immediate postoperative complete occlusion rate (P < 0.001), total occlusion rate (P = 0.016), and a good outcome rate (P = 0.041) compared with the FD strategy. The FDAC strategy can yield a higher rate of good outcomes than the FD strategy. The PEISSERM technique employed by the FDAC is a reliable and effective treatment approach as it can minimize the hemodynamic burden of BBA's fragile dome, thereby achieving an excellent occlusion rate. The PEISSERM technique in the FDAC strategy contributes to understanding the BBA's treatment and offers a potentially optimal treatment for BBA.


Aneurysm, Ruptured , Carotid Artery, Internal , Female , Male , Humans , Adult , Carotid Artery, Internal/surgery , Retrospective Studies , Aneurysm, Ruptured/surgery , Angiography , Blood Vessel Prosthesis
18.
Mitochondrial DNA B Resour ; 8(11): 1192-1195, 2023.
Article En | MEDLINE | ID: mdl-37937100

In this study, the complete mitochondrial genome of Chlorogomphus shanicus Wilson, 2002 was reported, and the maximum-likelihood (ML) phylogenetic tree was constructed using 13 protein-coding genes (PCGs). The total length of the mitogenome of C. shanicus was 15,497 bp. Twelve PCGs started with ATN codons, except cox1 began with TTG codon. Most transfer RNA genes (tRNAs) were predicted to fold in a typical cloverleaf structure, except the trnS1 (gct), which lacked a dihydrouridine arm that had been simplified to a loop. The phylogenetic tree showed that Anisoptera was split into two clades, and revealed that C. shanicus was closely related to Cordulegaster boltonii (Donovan, 1807) which is endemic to Europe.

19.
J Med Chem ; 66(23): 16091-16108, 2023 12 14.
Article En | MEDLINE | ID: mdl-37982494

The master transcription factor receptor retinoic acid receptor-related orphan receptor γt (RORγt) regulates the differentiation of T-helper 17 (Th17) cells and the production of interleukin-17 (IL-17). Activation of RORγt+ T cells in the tumor microenvironment promotes immune infiltration to more effectively inhibit tumor growth. Therefore, RORγt agonists provide a reachable approach to cancer immunotherapy. Herein, a series of biaryl amide derivatives as novel RORγt agonists were designed, synthesized, and evaluated. Starting from the reported RORγt inverse agonist GSK805 (1), "functionality switching" and structure-based drug optimization led to the discovery of a promising RORγt agonist lead compound 14, which displayed potent and selective RORγt agonist activity and significantly improved metabolic stability. With excellent in vivo pharmacokinetic profiles, compound 14 demonstrated robust efficacy in preclinical tumor models of mouse B16F10 melanoma and LLC lung adenocarcinoma. Taken together, current studies indicate that 14 deserves further investigation as a potential lead RORγt agonist for cancer immunotherapy.


Amides , Neoplasms , Mice , Animals , Amides/pharmacology , Amides/therapeutic use , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Drug Inverse Agonism , Immunotherapy , Tumor Microenvironment
20.
J Transl Med ; 21(1): 701, 2023 10 08.
Article En | MEDLINE | ID: mdl-37807060

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is closely associated with steroid hormones and their receptors affected by lipid metabolism. Recently, there has been growing interest in the carcinogenic role of NR3C1, the sole gene responsible for encoding glucocorticoid receptor. However, the specific role of NR3C1 in ccRCC remains unclear. The present study was thus developed to explore the underlying mechanism of NR3C1's carcinogenic effects in ccRCC. METHODS: Expression of NR3C1 was verified by various tumor databases and assessed using RT-qPCR and western blot. Stable transfected cell lines of ccRCC with NR3C1 knockdown were constructed, and a range of in vitro and in vivo experiments were performed to examine the effects of NR3C1 on ccRCC proliferation and migration. Transcriptomics and lipidomics sequencing were then conducted on ACHN cells, which were divided into control and sh-NR3C1 group. Finally, the sequencing results were validated using transmission electron microscopy, mitochondrial membrane potential assay, immunofluorescence co-localization, cell immunofluorescent staining, and Western blot. The rescue experiments were designed to investigate the relationship between endoplasmic reticulum stress (ER stress) and mitophagy in ccRCC cells after NR3C1 knockdown, as well as the regulation of their intrinsic signaling pathways. RESULTS: The expression of NR3C1 in ccRCC cells and tissues was significantly elevated. The sh-NR3C1 group, which had lower levels of NR3C1, exhibited a lower proliferation and migration capacity of ccRCC than that of the control group (P < 0.05). Then, lipidomic and transcriptomic sequencing showed that lipid metabolism disorders, ER stress, and mitophagy genes were enriched in the sh-NR3C1 group. Finally, compared to the control group, ER stress and mitophagy were observed in the sh-NR3C1 group, while the expression of ATF6, CHOP, PINK1, and BNIP3 was also up-regulated (P < 0.05). Furthermore, Ceapin-A7, an inhibitor of ATF6, significantly down-regulated the expression of PINK1 and BNIP3 (P < 0.05), and significantly increased the proliferation and migration of ccRCC cells (P < 0.05). CONCLUSIONS: This study confirms that knockdown of NR3C1 activates ER stress and induces mitophagy through the ATF6-PINK1/BNIP3 pathway, resulting in reduced proliferation and migration of ccRCC. These findings indicate potential novel targets for clinical treatment of ccRCC.


Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Mitophagy/genetics , Cell Line, Tumor , Endoplasmic Reticulum Stress , Cell Proliferation/genetics , Protein Kinases/metabolism , Gene Expression Regulation, Neoplastic , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
...