Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 66(6): 1192-1205, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639466

RESUMEN

The mountains of Southwest China comprise a significant large mountain range and biodiversity hotspot imperiled by global climate change. The high species diversity in this mountain system has long been attributed to a complex set of factors, and recent large-scale macroevolutionary investigations have placed a broad timeline on plant diversification that stretches from 10 million years ago (Mya) to the present. Despite our increasing understanding of the temporal mode of speciation, finer-scale population-level investigations are lacking to better refine these temporal trends and illuminate the abiotic and biotic influences of cryptic speciation. This is largely due to the dearth of organismal sampling among closely related species and populations, spanning the incredible size and topological heterogeneity of this region. Our study dives into these evolutionary dynamics of speciation using genomic and eco-morphological data of Stellera chamaejasme L. We identified four previously unrecognized cryptic species having indistinct morphological traits and large metapopulation of evolving lineages, suggesting a more recent diversification (~2.67-0.90 Mya), largely influenced by Pleistocene glaciation and biotic factors. These factors likely influenced allopatric speciation and advocated cyclical warming-cooling episodes along elevational gradients during the Pleistocene. The study refines the evolutionary timeline to be much younger than previously implicated and raises the concern that projected future warming may influence the alpine species diversity, necessitating increased conservation efforts.


Asunto(s)
Biodiversidad , Especiación Genética , Thymelaeaceae , Thymelaeaceae/genética , Filogenia , Cubierta de Hielo
3.
Hortic Res ; 10(4): uhad031, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37799629

RESUMEN

A full understanding of adaptive genetic variation at the genomic level will help address questions of how organisms adapt to diverse climates. Actinidia eriantha is a shade-tolerant species, widely distributed in the southern tropical region of China, occurring in spatially heterogeneous environments. In the present study we combined population genomic, epigenomic, and environmental association analyses to infer population genetic structure and positive selection across a climatic gradient, and to assess genomic offset to climatic change for A. eriantha. The population structure is strongly shaped by geography and influenced by restricted gene flow resulting from isolation by distance due to habitat fragmentation. In total, we identified 102 outlier loci and annotated 455 candidate genes associated with the genomic basis of climate adaptation, which were enriched in functional categories related to development processes and stress response; both temperature and precipitation are important factors driving adaptive variation. In addition to single-nucleotide polymorphisms (SNPs), a total of 27 single-methylation variants (SMVs) had significant correlation with at least one of four climatic variables and 16 SMVs were located in or adjacent to genes, several of which were predicted to be involved in plant response to abiotic or biotic stress. Gradient forest analysis indicated that the central/east populations were predicted to be at higher risk of future population maladaptation under climate change. Our results demonstrate that local climate factors impose strong selection pressures and lead to local adaptation. Such information adds to our understanding of adaptive mechanisms to variable climates revealed by both population genome and epigenome analysis.

5.
Commun Biol ; 6(1): 706, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429977

RESUMEN

Glasshouse plants are species that trap warmth via specialized morphology and physiology, mimicking a human glasshouse. In the Himalayan alpine region, the highly specialized glasshouse morphology has independently evolved in distinct lineages to adapt to intensive UV radiation and low temperature. Here we demonstrate that the glasshouse structure - specialized cauline leaves - is highly effective in absorbing UV light but transmitting visible and infrared light, creating an optimal microclimate for the development of reproductive organs. We reveal that this glasshouse syndrome has evolved at least three times independently in the rhubarb genus Rheum. We report the genome sequence of the flagship glasshouse plant Rheum nobile and identify key genetic network modules in association with the morphological transition to specialized glasshouse leaves, including active secondary cell wall biogenesis, upregulated cuticular cutin biosynthesis, and suppression of photosynthesis and terpenoid biosynthesis. The distinct cell wall organization and cuticle development might be important for the specialized optical property of glasshouse leaves. We also find that the expansion of LTRs has likely played an important role in noble rhubarb adaptation to high elevation environments. Our study will enable additional comparative analyses to identify the genetic basis underlying the convergent occurrence of glasshouse syndrome.


Asunto(s)
Rheum , Humanos , Rheum/genética , Redes Reguladoras de Genes , Aclimatación , Frío , Rayos Infrarrojos
6.
Materials (Basel) ; 16(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37109874

RESUMEN

Porous high-entropy ceramics are a new alternative material for thermal insulation. Their better stability and low thermal conductivity are due to lattice distortion and unique pore structures. In this work, rare-earth-zirconate ((La0.25Eu0.25Gd0.25Yb0.25)2(Zr0.75Ce0.25)2O7) porous high-entropy ceramics were fabricated by a tert-butyl alcohol (TBA)-based gel-casting method. The regulation of pore structures was realized through changing different initial solid loadings. The XRD, HRTEM, and SAED results showed that the porous high-entropy ceramics had a single fluorite phase without impurity phases, exhibiting high porosity (67.1-81.5%), relatively high compressive strength (1.02-6.45 MPa) and low thermal conductivity (0.0642-0.1213 W/(m·K)) at room temperature. Porous high-entropy ceramics with 81.5% porosity demonstrated excellent thermal properties, showing a thermal conductivity of 0.0642 W/(m·K) at room temperature and 0.1467 W/(m·K) at 1200 °C. The unique pore structure with a micron size contributed to their excellent thermal insulating performance. The present work provides the prospect that rare-earth-zirconate porous high-entropy ceramics with tailored pore structures are expected to be thermal insulation materials.

7.
iScience ; 26(3): 106159, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36895650

RESUMEN

Circaeaster agrestis and Kingdonia uniflora are sister species that reproduce sexually and mainly asexually respectively, providing a good system for comparative genome evolution between taxa with different reproductive models. Comparative genome analyses revealed the two species have similar genome size, but C. agrestis encodes many more genes. The gene families specific to C. agrestis show significant enrichment of genes associated with defense response, while those gene families specific to K. uniflora are enriched in genes regulating root system development. Collinearity analyses revealed C. agrestis experienced two rounds of whole-genome duplication. Fst outlier test across 25 C. agrestis populations uncovered a close inter-relationship between abiotic stress and genetic variability. Genetic feature comparisons showed K. uniflora presents much higher genome heterozygosity, transposable element load, linkage disequilibrium degree, and πN/πS ratio. This study provides new insights into understanding the genetic differentiation and adaptation within ancient lineages characterized by multiple reproductive models.

8.
J Integr Plant Biol ; 65(7): 1620-1635, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36960823

RESUMEN

Evolutionary convergence is one of the most striking examples of adaptation driven by natural selection. However, genomic evidence for convergent adaptation to extreme environments remains scarce. Here, we assembled reference genomes of two alpine plants, Saussurea obvallata (Asteraceae) and Rheum alexandrae (Polygonaceae), with 37,938 and 61,463 annotated protein-coding genes. By integrating an additional five alpine genomes, we elucidated genomic convergence underlying high-altitude adaptation in alpine plants. Our results detected convergent contractions of disease-resistance genes in alpine genomes, which might be an energy-saving strategy for surviving in hostile environments with only a few pathogens present. We identified signatures of positive selection on a set of genes involved in reproduction and respiration (e.g., MMD1, NBS1, and HPR), and revealed signatures of molecular convergence on genes involved in self-incompatibility, cell wall modification, DNA repair and stress resistance, which may underlie adaptation to extreme cold, high ultraviolet radiation and hypoxia environments. Incorporating transcriptomic data, we further demonstrated that genes associated with cuticular wax and flavonoid biosynthetic pathways exhibit higher expression levels in leafy bracts, shedding light on the genetic mechanisms of the adaptive "greenhouse" morphology. Our integrative data provide novel insights into convergent evolution at a high-taxonomic level, aiding in a deep understanding of genetic adaptation to complex environments.


Asunto(s)
Altitud , Rayos Ultravioleta , Adaptación Fisiológica/genética , Perfilación de la Expresión Génica , Plantas , Genómica , Selección Genética
9.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674965

RESUMEN

Asexual lineages are perceived to be short-lived on evolutionary timescales. Hence, reports for exceptional cases of putative 'ancient asexuals' usually raise questions about the persistence of such species. So far, there have been few studies to solve the mystery in plants. The monotypic Kingdonia dating to the early Eocene, contains only K. uniflora that has no known definitive evidence for sexual reproduction nor records for having congeneric sexual species, raising the possibility that the species has persisted under strict asexuality for a long period of time. Here, we analyze whole genome polymorphism and divergence in K. uniflora. Our results show that K. uniflora is characterized by high allelic heterozygosity and elevated πN/πS ratio, in line with theoretical expectations under asexual evolution. Allele frequency spectrum analysis reveals the origin of asexuality in K. uniflora occurred prior to lineage differentiation of the species. Although divergence within K. uniflora individuals exceeds that between populations, the topologies of the two haplotype trees, however, fail to match each other, indicating long-term asexuality is unlikely to account for the high allele divergence and K. uniflora may have a recent hybrid origin. Phi-test shows a statistical probability of recombination for the conflicting phylogenetic signals revealed by the split network, suggesting K. uniflora engages in undetected sexual reproduction. Detection of elevated genetic differentiation and premature stop codons (in some populations) in genes regulating seed development indicates mutational degradation of sexuality-specific genes in K. uniflora. This study unfolds the origin and persistence mechanism of a plant lineage that has been known to reproduce asexually and presents the genomic consequences of lack of sexuality.


Asunto(s)
Ranunculales , Reproducción Asexuada , Humanos , Filogenia , Reproducción Asexuada/genética , Metagenómica , Sexualidad , Genómica , Alelos , Semillas
10.
Front Plant Sci ; 13: 893201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275552

RESUMEN

Polygonaceae has a complex taxonomic history, although a few studies using plastid or nuclear DNA fragments have explored relationships within this family, intrafamilial relationships remain controversial. Here, we newly sequenced and annotated 17 plastomes representing 12 genera within Polygonaceae. Combined with previously published data, a total of 49 plastomes representing 22/46 Polygonaceae genera and 16/20 Polygonoideae genera were collected to infer the phylogeny of Polygonaceae, with an emphasis on Polygonoideae. Plastome comparisons revealed high conservation within Polygonoideae in structure and gene order. Phylogenetic analyses using both Maximum Likelihood and Bayesian methods revealed two major clades and seven tribes within Polygonoideae. BEAST and S-DIVA analyses suggested a Paleocene origin of Polygonoideae in Asia. While most genera of Polygonoideae originated and further diversified in Asia, a few genera experienced multiple long-distance dispersal events from Eurasia to North America after the Miocene, with a few dispersal events to the Southern Hemisphere also being detected. Both ancient vicariance and long-distance events have played important roles in shaping the current distribution pattern of Polygonoideae.

11.
BMC Plant Biol ; 22(1): 89, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227218

RESUMEN

BACKGROUND: Refugia is considered to be critical for maintaining biodiversity; while discerning the type and pattern of refugia is pivotal for our understanding of evolutionary processes in the context of conservation. Interglacial and glacial refugia have been studied throughout subtropical China. However, studies on refugia along the oceanic-continental gradient have largely been ignored. We used a liana Actinidia eriantha, which occurs across the eastern moist evergreen broad-leaved forests of subtropical China, as a case study to test hypotheses of refugia along the oceanic-continental gradient and 'oceanic' adaptation. RESULTS: The phylogeographic pattern of A. eriantha was explored using a combination of three cpDNA markers and 38 nuclear microsatellite loci, Species distribution modelling and dispersal corridors analysis. Our data showed intermediate levels of genetic diversity [haplotype diversity (hT) = 0.498; unbiased expected heterozygosity (UHE) = 0.510] both at the species and population level. Microsatellite loci revealed five clusters largely corresponding to geographic regions. Coalescent time of cpDNA lineages was dated to the middle Pliocene (ca. 4.03 Ma). Both geographic distance and climate difference have important roles for intraspecific divergence of the species. The Zhejiang-Fujian Hilly Region was demonstrated to be a refugium along the oceanic-continental gradient of the species and fit the 'refugia in refugia' pattern. Species distribution modelling analysis indicated that Precipitation of Coldest Quarter (importance of 44%), Temperature Seasonality (29%) and Mean Temperature of Wettest Quarter (25%) contributed the most to model development. By checking the isolines in the three climate layers, we found that A. eriantha prefer higher precipitation during the coldest quarter, lower seasonal temperature difference and lower mean temperature during the wettest quarter, which correspond to 'oceanic' adaptation. Actinidia eriantha expanded to its western distribution range along the dispersal corridor repeatedly during the glacial periods. CONCLUSIONS: Overall, our results provide integrated evidence demonstrating that the Zhejiang-Fujian Hilly Region is a refugium along the oceanic-continental gradient of Actinidia eriantha in subtropical China and that speciation is attributed to 'oceanic' adaptation. This study gives a deeper understanding of the refugia in subtropical China and will contribute to the conservation and utilization of kiwifruit wild resources in the context of climate change.


Asunto(s)
Actinidia/genética , Actinidia/fisiología , Adaptación Biológica , Biodiversidad , Evolución Molecular , Refugio de Fauna , China , Clima , ADN de Cloroplastos , Genes de Plantas , Marcadores Genéticos , Haplotipos , Repeticiones de Microsatélite , Filogeografía
12.
Proc Biol Sci ; 288(1962): 20211575, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34727720

RESUMEN

Evolutionary radiations have intrigued biologists for more than a century, yet our understanding of the drivers of radiating diversification is still limited. We investigate the roles of environmental and species-intrinsic factors in driving the rapid radiation of Saussurea (Asteraceae) by deploying a number of palaeoenvironment-, diversity- and trait-dependent models, as well as ecological distribution data. We show that three main clades of Saussurea began to diversify in the Miocene almost simultaneously, with increasing diversification rates (DRs) negatively dependent on palaeotemperature but not dependent on species diversity. Our trait-dependent models detect some adaptive morphological innovations associated with DR shifts, while indicating additional unobserved traits are also likely driving diversification. Accounting for ecological niche data, we further reveal that accelerations in DRs are correlated with niche breadth and the size of species' range. Our results point out a macroevolutionary scenario where both adaptive morphological evolution and ecological opportunities provided by palaeoenvironmental fluctuations triggered an exceptionally radiating diversification. Our study highlights the importance of integrating phylogenomic, morphological, ecological and model-based approaches to illustrate evolutionary dynamics of lineages in biodiversity hotspots.


Asunto(s)
Asteraceae , Saussurea , Biodiversidad , Evolución Biológica , Ecosistema , Filogenia , Saussurea/genética
13.
Natl Sci Rev ; 8(4): nwaa105, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34691607

RESUMEN

To evaluate the phylogenetic patterns of the distribution and evolution of plant secondary metabolites (PSMs), we selected 8 classes of PSMs and mapped them onto an updated phylogenetic tree including 437 families of seed plants. A significant phylogenetic signal was detected in 17 of the 18 tested seed-plant clades for at least 1 of the 8 PSM classes using the D statistic. The phylogenetic signal, nevertheless, indicated weak clustering of PSMs compared to a random distribution across all seed plants. The observed signal suggests strong diversifying selection during seed-plant evolution and/or relatively weak evolutionary constraints on the evolution of PSMs. In the survey of the current phylogenetic distributions of PSMs, we found that multiple origins of PSM biosynthesis due to external selective forces for diverse genetic pathways may have played important roles. In contrast, a single origin of PSMs seems rather uncommon. The distribution patterns for PSMs observed in this study may also be useful in the search for natural compounds for medicinal purposes.

14.
Front Plant Sci ; 12: 681864, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567021

RESUMEN

Objectively evaluating different lines of evidence within a formalized framework is the most efficient and theoretically grounded approach for defining robust species hypotheses. Asteropyrum Drumm. et Hutch. is a small genus of perennial herb containing two species, A. cavaleriei and A. peltatum. The distinction of these two species mainly lies in the shape and size of leaf blades. However, these characters have been considered labile and could not differentiate the two species reliably. In this study, we investigated the variation of the leaf blades of 28 populations across the whole range of Asteropyrum using the landmark-based geometric morphometrics (GMM), sought genetic gaps within this genus using DNA barcoding, phylogenetic reconstruction and population genetic methods, and compared the predicted ecological niches of the two species. The results showed that the leaf form (shape and size) was overlapped between the two species; barcode gap was not detected within the genus Asteropyrum; and little ecological and geographical differentiation was found between the two taxa. Two genetic clusters detected by population genetic analysis did not match the two morphospecies. The results suggest that there are no distinct boundaries between the two species of Asteropyrum in terms of morphology, genetics and ecology and this present classification should be abandoned. We anticipate that range-wide population genomic studies would properly delineate the species boundaries and help to understand the evolution and speciation within Asteropyrum.

15.
Plants (Basel) ; 10(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34451759

RESUMEN

Understanding how species adapt to extreme environments is an extension of the main goals of evolutionary biology. While alpine plants are an ideal system for investigating the genetic basis of high-altitude adaptation, genomic resources in these species are still limited. In the present study, we generated reference-level transcriptomic data of five Saussurea species through high-throughput sequencing and de novo assembly. Three of them are located in the highland of the Qinghai-Tibet Plateau (QTP), and the other two are close relatives distributed in the lowland. A series of comparative and evolutionary genomics analyses were conducted to explore the genetic signatures of adaptive evolution to high-altitude environments. Estimation of divergence time using single-copy orthologs revealed that Saussurea species diversified during the Miocene, a period with extensive tectonic movement and climatic fluctuation on the QTP. We characterized gene families specific to the alpine species, including genes involved in oxidoreductase activity, pectin catabolic process, lipid transport, and polysaccharide metabolic process, which may play important roles in defense of hypoxia and freezing temperatures of the QTP. Furthermore, in a phylogenetic context with the branch model, we identified hundreds of genes with signatures of positive selection. These genes are involved in DNA repair, membrane transport, response to UV-B and hypoxia, and reproductive processes, as well as some metabolic processes associated with nutrient intake, potentially responsible for Saussurea adaptation to the harsh environments of high altitude. Overall, our study provides valuable genomic resources for alpine species and gained helpful insights into the genomic basis of plants adapting to extreme environments.

16.
Ecol Evol ; 11(12): 8000-8013, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188867

RESUMEN

The flora of northern China forms the main part of the Sino-Japanese floristic region and is located in a south-north vegetative transect in East Asia. Phylogeographic studies have demonstrated that an arid belt in this region has promoted divergence of plants in East Asia. However, little is known about how plants that are restricted to the arid belt of flora in northern China respond to climatic oscillation and environmental change. Here, we used genomic-level data of Myripnois dioica across its distribution as a representative of northern China flora to reconstruct plant demographic history, examine local adaptation related to environmental disequilibrium, and investigate the factors related to effective population size change. Our results indicate M. dioica originated from the northern area and expanded to the southern area, with the Taihang Mountains serving as a physical barrier promoting population divergence. Genome-wide evidence found strong correlation between genomic variation and environmental factors, specifically signatures associated with local adaptation to drought stress in heterogeneous environments. Multiple linear regression analyses revealed joint effects of population age, mean temperature of coldest quarter, and precipitation of wettest month on effective population size (Ne). Our current study uses M. dioica as a case for providing new insights into the evolutionary history and local adaptation of northern China flora and provides qualitative strategies for plant conservation.

17.
Genomics ; 113(2): 447-455, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33370586

RESUMEN

A plant parasite obligately parasitizing another plant parasite is referred to as epiparasite, which is extremely rare in angiosperms, and their complete plastome sequences have not been characterized to date. In this study, the complete plastomes of two flowering epiparasites: Phacellaria compressa and P. glomerata (Amphorogynaceae, Santalales) were sequenced. The plastomes of both species are of similar size, structure, gene content, and arrangement of genes to other hemiparasites in Santalales. Their plastomes were characterized by the functional loss of plastid-encoded NAD(P)H-dehydrogenase and infA genes, which strongly coincides with the general pattern of plastome degradation observed in Santalales hemiparasites. Our study demonstrates that the relatively higher level of nutritional reliance on the host plants and the reduced vegetative bodies of P. compressa and P. glomerata do not appear to cause any unique plastome degradation compared with their closely related hemiparasites.


Asunto(s)
Genoma de Plastidios , Procesos Heterotróficos , Santalaceae/genética , Animales , Evolución Molecular , Eliminación de Gen , NADPH Deshidrogenasa/genética , Proteínas de Plantas/genética , Polimorfismo Genético , Santalaceae/metabolismo , Santalaceae/fisiología
18.
PhytoKeys ; 156: 103-112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32913411

RESUMEN

This report provides a description of Primula sunhangii from the Shennongjia Forestry District, Hubei Province in Central China, which is categorized as a new species of the primrose family. Primula sunhangii is morphologically similar to P. involucrata Wall. ex Duby in terms of its simple umbel, efarinose, and prolonged bracts. However, P. sunhangii is distinguished by its glabrous sepal, short petiole (compare with blade) and cylindrical calyx and capsule. Molecular phylogenetic analysis based on nuclear and cpDNA genes demonstrates that P. sunhangii and P. involucrata are closely related. Combining genetic and morphological data, the recognition of P. sunhangii as a unique new species is supported.

19.
PhytoKeys ; 156: 113-124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32913412

RESUMEN

Geum sunhangii - first discovered in Shennongjia National Nature Reserve, Hubei Province, China - is described as a new species of Rosaceae. Compared to all known Chinese Geum species, the new species differs by possessing jointed styles, imbricate petals and a reniform radical leaf terminal leaflet. Most significantly, the jointed style is curved at an obtuse or a right angle. In addition, the inclusion of this species within the genus Geum was supported by phylogenetic analysis using the sequence data of a nuclear ribosomal internal transcribed spacer (nrITS) and a chloroplast trnL-trnF intergenic spacer. The new species was found to be closely related to G. rivale and G. aleppicum.

20.
Materials (Basel) ; 13(16)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796536

RESUMEN

The undesirable properties of conventional recycled fine aggregate (RFA) often limit its application in the construction industry. To overcome this challenge, a method for preparing completely recycled fine aggregate (CRFA), which crushes all concrete waste only into fine aggregate, was proposed. The obtained CRFA had high apparent density, and its water absorption was lower than that of the conventional RFA. To take advantage of the CRFA, this paper introduced the modified packing density method for the CRFA concrete mix design. The modified packing density method took account of the powder with a particle size of smaller than 75 µm in the CRFA and balanced both the void ratio and the specific surface area of the aggregate system. Concrete (grade C55) was prepared using the CRFA to validate the feasibility of the proposed method. The unit price of the prepared CRFA concrete was around 12.7% lower than that of the natural aggregate concrete. Additionally, the proposed procedure for the concrete mixture design could recycle all concrete waste into the new concrete and replace all the natural fine aggregate in the concrete mixture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...