Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(21): 9102-9112, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38752859

RESUMEN

Cetaceans play a pivotal role in maintaining the ecological equilibrium of ocean ecosystems. However, their populations are under global threat from environmental contaminants. Various high levels of endocrine-disrupting chemicals (EDCs) have been detected in cetaceans from the South China Sea, such as the Indo-Pacific humpback dolphins in the Pearl River Estuary (PRE), suggesting potential health risks, while the impacts of endocrine disruptors on the dolphin population remain unclear. This study aims to synthesize the population dynamics of the humpback dolphins in the PRE and their profiles of EDC contaminants from 2005 to 2019, investigating the potential role of EDCs in the population dynamics of humpback dolphins. Our comprehensive analysis indicates a sustained decline in the PRE humpback dolphin population, posing a significant risk of extinction. Variations in sex hormones induced by EDC exposure could potentially impact birth rates, further contributing to the population decline. Anthropogenic activities consistently emerge as the most significant stressor, ranking highest in importance. Conventional EDCs demonstrate more pronounced impacts on the population compared to emerging compounds. Among the conventional pollutants, DDTs take precedence, followed by zinc and chromium. The most impactful emerging EDCs are identified as alkylphenols. Notably, as the profile of EDCs changes, the significance of conventional pollutants may give way to emerging EDCs, presenting a continued challenge to the viability of the humpback dolphin population.


Asunto(s)
Delfines , Disruptores Endocrinos , Dinámica Poblacional , Animales , Disruptores Endocrinos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente
2.
Ren Fail ; 45(2): 2273427, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37955107

RESUMEN

Annexin A2 (Anxa2) is a calcium (Ca2+)-regulated phospholipid binding protein composed of a variable N-terminus and a conserved core domain. This protein has been widely found in many tissues and fluids, including tubule cells, glomerular epithelial cells, renal vessels, and urine. In acute kidney injury, the expression level of this protein is markedly elevated in response to acute stress. Moreover, Anxa2 is a novel biomarker and potential therapeutic target with prognostic value in chronic kidney disease. In addition, Anxa2 is associated not only with clear-cell renal cell carcinoma differentiation but also the formation of calcium-related nephrolithiasis. In this review, we discuss the characteristics and functions of Anxa2 and focus on recent reports on the role of Anxa2 in the kidney, which may be useful for future research.


Asunto(s)
Anexina A2 , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Anexina A2/metabolismo , Calcio/metabolismo , Riñón/patología , Carcinoma de Células Renales/patología
3.
Mol Med ; 29(1): 147, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891461

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) involves a variety of pathological processes, and ferroptosis plays a vital role in CKD progression. Targeting ferroptosis is a promising strategy for the treatment of CKD. However, inhibitors of ferroptosis have not been used in the clinical treatment of CKD. Vitexin is a natural flavonoid with many biological activities and protective effects against various diseases. However, whether vitexin can prevent the progression of CKD is not known. METHODS: In vivo, the effect of vitexin on CKD was evaluated by using mouse models of unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion (UIR). Western blotting, Sirius red staining and transmission electron microscopy were used to analyze renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. In vitro, CCK8 assays and lipid peroxidation assays were performed to analyze cell viability and lipid peroxidation in human renal tubular epithelial cells (HK2 cells) induced by erastin. The activation of renal fibroblasts (NRK-49 F cells) was also analyzed. Additionally, an in-silico protein-drug docking model and coimmunoprecipitation were performed to determine the direct substrate of vitexin. RESULTS: In vivo, vitexin treatment significantly ameliorated renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. Additionally, our results showed that vitexin significantly attenuated UUO- and UIR-induced ferroptosis in renal tubular epithelial cells by upregulating glutathione peroxidase 4 (GPX4) protein levels and inhibiting lipid peroxidation in mouse kidneys. In vitro, treatment with vitexin inhibited erastin-induced ferroptosis in HK2 cells. Moreover, vitexin inhibited the expression of collagen I and α-SMA (alpha-smooth muscle actin) in NRK-49 F cells induced by the supernatant of erastin-treated HK2 cells. Mechanistically, our results suggested that vitexin could activate the NRF2/heme oxygenase-1 (HO-1) pathway by inhibiting the KEAP1- and ubiquitination-mediated degradation of NRF2, thereby increasing the expression of GPX4, and further inhibiting lipid peroxidation and ferroptosis. Additionally, knockout of NRF2 greatly inhibited the antiferroptotic effects of vitexin. CONCLUSIONS: Taken together, our results indicate that vitexin can protect against renal tubular epithelial cell ferroptosis in CKD by activating the KEAP1/NRF2/HO-1 pathway and is a promising drug to treat CKD.


Asunto(s)
Ferroptosis , Insuficiencia Renal Crónica , Obstrucción Ureteral , Ratones , Humanos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo , Inflamación/metabolismo , Células Epiteliales/metabolismo , Fibrosis
4.
Biomed Pharmacother ; 155: 113656, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116251

RESUMEN

BACKGROUND: Gestational diabetes mellitus (GDM) is characterized by insulin resistance during pregnancy, and it is always combined with serious complications. Dendrobium mixture (DMix) is a kind of traditional Chinese medicine, and it has been proved to be an effective treatment for diabetes. However, the regulatory role of DMix in GDM remains elusive. METHODS: High fat feed combined with streptozotocin injection and high glucose medium were used to establish GDM animal and cell models, respectively. The levels of blood glucose, blood lipid, and insulin were measured with commercial kits. Western blotting was used to detect protein expression. RESULTS: DMix improved pancreas and placenta injury in GDM rats. DMix reversed the influence of GDM on the levels of SOD, MDA, and glutathione in the serum. Hyperglycemia and hyperlipidemia in GDM rats were suppressed by DMix. The activation of MAPK and inhibition of Nrf2/HO1 in GDM animal and cell models were reversed by DMix. The increase of ROS intensity, apoptosis, and inflammation factors in HG treated cells were reversed by DMix. CONCLUSION: This research proved that DMix improved GDM through inhibiting oxidative condition, inflammation factors, hyperglycemia and hyperlipidemia. This study might provide a novel thought for the prevention and treatment of GDM.


Asunto(s)
Dendrobium , Diabetes Gestacional , Hiperglucemia , Animales , Femenino , Humanos , Embarazo , Ratas , Glucemia , Diabetes Gestacional/tratamiento farmacológico , Diabetes Gestacional/metabolismo , Glutatión/farmacología , Inflamación , Insulina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal , Estreptozocina/farmacología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...