Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 552
1.
Adv Healthc Mater ; : e2400623, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691766

The immunosuppressive tumor microenvironment (ITME) of osteosarcoma (OS) poses a significant obstacle to the efficacy of existing immunotherapies. Despite the attempt of novel immune strategies such as immune checkpoint inhibitors and tumor vaccines, their effectiveness remains suboptimal due to the inherent difficulty in mitigating ITME simultaneously from both the tumor and immune system. The promotion of anti-tumor immunity through the induction of immunogenic cell death and activation of the cGAS-STING pathway has emerged as potential strategies to counter the ITME and stimulate systemic antitumor immune responses. Here, a bimetallic polyphenol-based nanoplatform (Mn/Fe-Gallate nanoparticles coated with tumor cell membranes is presented, MFG@TCM) which combines with mild photothermal therapy (PTT) for reversing ITME via simultaneously inducing pyroptosis in OS cells and activating the cGAS-STING pathway in dendritic cells (DCs). The immunostimulatory pathways, through the syngeneic effect, exerted a substantial positive impact on promoting the secretion of damage-associated molecular patterns (DAMPs) and proinflammatory cytokines, which favors remodeling the immune microenvironment. Consequently, effector T cells led to a notable antitumor immune response, effectively inhibiting the growth of both primary and distant tumors. This study proposes a new method for treating OS using mild PTT and immune mudulation, showing promise in overcoming current treatment limitations.

3.
Emerg Microbes Infect ; : 2358073, 2024 May 20.
Article En | MEDLINE | ID: mdl-38764403

Mycobacterium chelonae and Sporothrix globosa, both of which are opportunistic pathogens, have been proved to be possible multidrug resistant. However, are all recurring symptoms in chronic infections related to decreasing susceptibility? Here we report a case of sporotrichosis secondary to M. chelonae infection. In addition, we find that the blackish-red spots under the dermoscopic view can be employed as a signal for the early identification and regression of sub-cutaneous fungal infection.

4.
J Immunol Res ; 2024: 9927964, 2024.
Article En | MEDLINE | ID: mdl-38590608

Background: Psoriasis, a systemic disorder mediated by the immune system, can appear on the skin, joints, or both. Individuals with cutaneous psoriasis (PsC) have an elevated risk of developing psoriatic arthritis (PsA) during their lifetime. Despite this known association, the cellular and molecular mechanisms underlying this progression remain unclear. Methods: We performed high-dimensional, in-depth immunophenotyping of peripheral blood mononuclear cells (PBMCs) in patients with PsA and psoriasis vulgaris (PsV) by mass cytometry. Blood samples were collected before and after therapy for a longitudinal study. Then three sets of comparisons were made here: active PsA vs. active PsV, untreated PsV vs. treated PsV, and untreated PsA vs. treated PsA. Results: Marked differences were observed in multiple lymphocyte subsets of PsA related to PsV, with expansion of CD4+ T cells, CD16- NK cells, and B cells. Notably, two critical markers, CD28 and CD127, specifically differentiated PsA from PsV. The expression levels of CD28 and CD127 on both Naïve T cells (TN) and central memory CD4+ T cells (TCM) were considerably higher in PsA than PsV. Meanwhile, after treatment, patients with PsV had higher levels of CD28hi CD127hi CD4+ TCM cells, CD28hi CD127hi CD4+ TN cells, and CD16- NK cells. Conclusion: In the circulation of PsA patients, the TN and CD4+ TCM are characterized with more abundant CD28 and CD127, which effectively distinguished PsA from PsV. This may indicate that individuals undergoing PsV could be stratified at high risk of developing PsA based on the circulating levels of CD28 and CD127 on specific cell subsets.


Arthritis, Psoriatic , Psoriasis , Humans , Arthritis, Psoriatic/diagnosis , Longitudinal Studies , Leukocytes, Mononuclear , CD28 Antigens , Psoriasis/diagnosis
5.
Stem Cells Dev ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38661547

Leprosy ulcer is a chronic and recurrent disease resulting from nerve injury. While existing treatments partially facilitate ulcer healing, they exhibit limited ability to address localized nerve repair, leading to a risk of recurrence. Moreover, there is a dearth of animal models to evaluate the preclinical efficacy and safety of novel therapeutic approaches. Over the years, adipose-derived mesenchymal stem cells have been extensively employed in regenerative medicine as an optimal cell therapy source for fostering skin ulcer healing. They have also demonstrated the capacity to enhance nerve regeneration in in vitro experiments and clinical trials. In this study, we established a NU/NU mouse foot pad leprosy ulcer model, transplanted human adipose-derived stem cells (hADSCs) into leprosy ulcers via local injection, and conducted subsequent follow-up. Our findings revealed that hADSCs persisted in the leprosy ulcer and facilitated the healing process. In this respect, gross observation and histological analysis revealed increased granular formation, collagen synthesis, and re-epithelialization in the local ulcer area. RNA-Seq data revealed that the upregulated differential genes resulting from the transplantation intervention were not only enriched in pathways related to re-epithelialization and collagen synthesis but also contributed to local nerve regeneration. Furthermore, immunofluorescence assays revealed the increased expression of angiogenesis markers-CD31 and VEGFa, cell proliferation markers-Ki67 and TGF-ß, and nerve regeneration markers-ß3-tubulin, SOX10, NGF, and NT-3. These results underscore the potential of hADSCs in promoting the healing of leprosy ulcers and offer valuable preclinical data for their prospective clinical application.

6.
BMJ Open Qual ; 13(2)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38670556

BACKGROUND: Examine how Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS) can be used to manage patient safety and improve the standard of care for patients. METHODS: In order to improve key medical training in areas like surgical safety management, blood transfusion closed-loop management, drug safety management and identity recognition, we apply the TeamSTEPPS teaching methodology. We then examine the effects of this implementation on changes in pertinent indicators. RESULTS: Our hospital's perioperative death rate dropped to 0.019%, unscheduled reoperations dropped to 0.11%, and defined daily doses fell to 24.85. Antibiotic usage among hospitalised patients declined to 40.59%, while the percentage of antibacterial medicine prescriptions for outpatient patients decreased to 13.26%. Identity recognition requirements were implemented at a rate of 94.5%, and the low-risk group's death rate dropped to 0.01%. Critical transfusion episodes were less common, with an incidence of 0.01%. The physician's TeamSTEPPS Teamwork Perceptions Questionnaire and Teamwork Attitudes Questionnaire scores dramatically improved following the TeamSTEPPS team instruction course. CONCLUSION: An evidence-based team collaboration training programme called TeamSTEPPS combines clinical practice with team collaboration skills to enhance team performance in the healthcare industry and raise standards for medical quality, safety, and effectiveness.


Patient Care Team , Patient Safety , Humans , Patient Safety/statistics & numerical data , Patient Safety/standards , Patient Care Team/standards , Patient Care Team/statistics & numerical data , Surveys and Questionnaires , Quality Improvement , Safety Management/methods , Safety Management/statistics & numerical data , Safety Management/standards
7.
BMC Cancer ; 24(1): 538, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678181

BACKGROUND: Patients with immunocompromise were suspected to encounter a high risk for severe coronavirus disease 2019 (COVID-19) infection on early period; however, data is lacking nowadays and immune response remain unclear. METHODS: In this retrospective study, internet questionnaire survey and medical records were acquired in pediatric hematology oncology patients. Clinical severity, immunological characteristics, and outcomes were analyzed from December 1, 2022 to January 31, 2023 at the 3rd year of pandemic in China. RESULTS: A total of 306 patients were included, with 21 patients (6.9%) asymptomatic, 262 (85.6%) mild severity, 17 (5.6%) moderate severity, 5 (1.6%) severe severity, and 1 (0.3%) critical severity. Seventy-eight (25.5%) patients were on intensive chemotherapy, and 32.0% children were on maintenance chemotherapy. Delays in cancer therapy occurred in 86.7% patients. Univariable analysis revealed active chemotherapy (P < 0.0001), long duration of symptom (P < 0.0001), low lymphocytes count (P = 0.095), low CD3 + and CD8 + T cell count (P = 0.013, P = 0.022), high percentage of CD4 + TCM (P = 0.016), and low percentage of transitional B cells (P = 0.045) were high risk factors for severe COVID-19 infection. Cox regression model showed that the absolute lymphocytes count (P = 0.027) and long duration of symptom (P = 0.002) were the independent factors for severity. Patients with CD8 + dominant and B cell depletion subtype wasn't related with severity, but had higher percentage of CD8 + effector memory T cells (TEM) and terminally differentiated effector memory T cells (TEMRA) (P < 0.001, P < 0.001), and a longer COVID-19 duration (P = 0.045). CONCLUSION: The severity was relatively mild in children with immunodeficiencies in the third year of COVID-19 pandemic. Low lymphocyte count and long duration of symptom were the independent risk factors with COVID-19 severity. Delays in cancer care remain a major concern and the long outcome is pending.


COVID-19 , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/epidemiology , COVID-19/complications , Child , Male , Female , Retrospective Studies , Child, Preschool , Adolescent , SARS-CoV-2/immunology , Immunophenotyping , China/epidemiology , Infant , Lymphocyte Count , Severity of Illness Index , Hematologic Neoplasms/immunology , Hematologic Neoplasms/complications , Neoplasms/immunology
8.
Angew Chem Int Ed Engl ; : e202320029, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38591694

N1-methyladenosine (m1A) modification is one of the most prevalent epigenetic modifications on RNA. Given the vital role of m1A modification in RNA processing such as splicing, stability and translation, developing a precise and controllable m1A editing tool is pivotal for in-depth investigating the biological functions of m1A. In this study, we developed an abscisic acid (ABA)-inducible and reversible m1A demethylation tool (termed AI-dm1A), which targets specific transcripts by combining the chemical proximity-induction techniques with the CRISPR/dCas13b system and ALKBH3. We successfully employed AI-dm1A to selectively demethylate the m1A modifications at A8422 of MALAT1 RNA, and this demethylation process could be reversed by removing ABA. Furthermore, we validated its demethylation function on various types of cellular RNAs including mRNA, rRNA and lncRNA. Additionally, we used AI-dm1A to specifically demethylate m1A on ATP5D mRNA, which promoted ATP5D expression and enhanced the glycolysis activity of tumor cells. Conversely, by replacing the demethylase ALKBH3 with methyltransferase TRMT61A, we also developed a controllable m1A methylation tool, namely AI-m1A. Finally, we caged ABA by 4,5-dimethoxy-2-nitrobenzyl (DMNB) to achieve light-inducible m1A methylation or demethylation on specific transcripts. Collectively, our m1A editing tool enables us to flexibly study how m1A modifications on specific transcript influence biological functions and phenotypes.

9.
Food Chem Toxicol ; 187: 114594, 2024 May.
Article En | MEDLINE | ID: mdl-38485042

Trichloroethylene (TCE), extensively used as an organic solvent in various industrial applications, has been identified as a causative factor in inducing hypersensitivity syndrome (THS). Currently, there is no specific treatment for THS, and most patients experience serious adverse outcomes due to extensive skin damage leading to severe infection. However, the pathogenesis of THS-associated skin damage remains unclear. This study aims to elucidate the mechanism underlying skin damage from the perspective of intercellular communication and gap junctions in THS. Our results verified that hyperactivation of connexin43 gap junctions, caused by the aberrantly elevated expression of connexin43, triggers a bystander effect that promotes apoptosis and inflammation in THS via the TNF-TNFRSF1B and mitochondria-associated pathways. Additionally, we identified the gap junction inhibitor Carbenoxolone disodium (CBX) as a promising agent for the treatment of skin damage in THS. CBX protects against inflammatory cell infiltration in the skin and decreases immune cell imbalance in the peripheral blood of THS mice. Furthermore, CBX reduces connexin43 expression, apoptosis and inflammation in THS mice. The study reveals new insights into the mechanisms underlying TCE-induced skin damage, offering a potential treatment strategy for the development of effective therapies targeting severe dermatitis induced by chemical exposure.


Trichloroethylene , Humans , Animals , Mice , Trichloroethylene/toxicity , Trichloroethylene/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Solvents , Gap Junctions/metabolism , Inflammation/metabolism
10.
Cell Death Dis ; 15(3): 192, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448411

N6-methyladenosine (m6A) and its associated reader protein insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) are involved in tumor initiation and progression via regulating RNA metabolism. This study aims to investigate the biological function and clinical significance of IGF2BP3 in gastric cancer (GC). The clinical significance of IGF2BP3 was evaluated using tumor related databases and clinical tissues. The biological role and molecular mechanism of IGF2BP3 in GC progression were investigated by multi-omics analysis including Ribosome sequence (Ribo-seq), RNA sequence (RNA-seq) and m6A sequence (m6A-seq) combined with gain- and loss- of function experiments. IGF2BP3 expression is significantly elevated in GC tissues and associated with poor prognosis of GC patients. Knockdown of IGF2BP3 significantly weakens the migration and clonogenic ability, promotes the apoptosis, inhibits translation, and suppresses in vitro growth and progression of GC cells. Mechanistically, IGF2BP3 regulates the mRNA stability and translation of the nuclear factor of activated T cells 1(NFAT1) in a m6A dependent manner. Then NFAT1 induced by IGF2BP3 acts as a transcription factor (TF) to negatively regulates the promoter activities of interferon regulatory factor 1 (IRF1) to inhibit its expression. Inhibition of IGF2BP3-induced expression of IRF1 activates interferon (IFN) signaling pathway and then exerts its anti-tumor effect. Elevated IGF2BP3 promotes in vivo and in vitro GC progression via regulation of NFAT1/IRF1 pathways. Targeted inhibition of IGF2BP3 might be a potential therapeutic approach for GC treatment.


Stomach Neoplasms , Humans , Apoptosis/genetics , Cell Transformation, Neoplastic , Interferon Regulatory Factor-1 , RNA , Stomach Neoplasms/genetics
11.
Ecotoxicol Environ Saf ; 274: 116174, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38471344

Trichloroethylene (TCE)-induced hypersensitivity syndrome (THS) has been a concern for many researchers in the field of environmental and occupational health. Currently, there is no specific treatment for THS, leaving patients to contend with severe infections arising from extensive skin lesions, consequently leading to serious adverse effects. However, the pathogenesis of severe skin damage in THS remains unclear. This study aims to investigate the specific danger signals and mechanisms underlying skin damage in THS through in vivo and in vitro experiments. We identified that cell supernatant containing 15 kDa granulysin (GNLY), released from activated CD3-CD56+NK cells or CD3+CD56+NKT cells in PBMC induced by TCE or its metabolite, promoted apoptosis in HaCaT cells. The apoptosis level decreased upon neutralization of GNLY in the supernatant by a GNLY-neutralizing antibody in HaCaT cells. Subcutaneous injection of recombinant 15 kDa GNLY exacerbated skin damage in the THS mouse model and better mimicked patients' disease states. Recombinant 15 kDa GNLY could directly induce cellular communication disorders, inflammation, and apoptosis in HaCaT cells. In addition to its cytotoxic effects, GNLY released from TCE-activated NK cells and NKT cells or synthesized GNLY alone could induce aberrant expression of the E3 ubiquitin ligase PDZRN3, causing dysregulation of the ubiquitination of the cell itself. Consequently, this resulted in the persistent opening of gap junctions composed of connexin43, thereby intensifying cellular inflammation and apoptosis through the "bystander effect". This study provides experimental evidence elucidating the mechanisms of THS skin damage and offers a novel theoretical foundation for the development of effective therapies targeting severe dermatitis induced by chemicals or drugs.


Trichloroethylene , Ubiquitin-Protein Ligases , Animals , Mice , Connexin 43/metabolism , Hypersensitivity/genetics , Hypersensitivity/metabolism , Inflammation/pathology , Killer Cells, Natural , Leukocytes, Mononuclear , Skin Diseases/chemically induced , Skin Diseases/genetics , Trichloroethylene/toxicity , Ubiquitin-Protein Ligases/metabolism , Humans
12.
Cell Rep ; 43(3): 113905, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38446660

Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.


Motivation , Signal Transduction , Mice , Male , Animals , Neurons/metabolism , Receptor, ErbB-4/metabolism , Amygdala/metabolism , Neuregulin-1/metabolism
13.
Mol Cell Proteomics ; 23(4): 100748, 2024 Apr.
Article En | MEDLINE | ID: mdl-38493954

The molecular mechanisms underlying muscular adaptations to concentric (CON) and eccentric (ECC) exercise training have been extensively explored. However, most previous studies have focused on specifically selected proteins, thus, unable to provide a comprehensive protein profile and potentially missing the crucial mechanisms underlying muscular adaptation to exercise training. We herein aimed to investigate proteomic profiles of human skeletal muscle in response to short-term resistance training. Twenty young males were randomly and evenly assigned to two groups to complete a 4-week either ECC or CON training program. Measurements of body composition and physiological function of the quadriceps femoris were conducted both before and after the training. Muscle biopsies from the vastus lateralis of randomly selected participants (five in ECC and four in CON) of both before and after the training were analyzed using the liquid-chromatography tandem mass spectrometry in combination with bioinformatics analysis. Neither group presented a significant difference in body composition or leg muscle mass; however, muscle peak torque, total work, and maximal voluntary contraction were significantly increased after the training in both groups. Proteomics analysis revealed 122 differentially abundant proteins (DAPs; p value < 0.05 & fold change >1.5 or <0.67) in ECC, of which the increased DAPs were mainly related to skeletal muscle contraction and cytoskeleton and enriched specifically in the pentose phosphate pathway, extracellular matrix-receptor interaction, and PI3K-Akt signaling pathway, whereas the decreased DAPs were associated with the mitochondrial respiratory chain. One hundred one DAPs were identified in CON, of which the increased DAPs were primarily involved in translation/protein synthesis and the mitochondria respiratory, whereas the decreased DAPs were related to metabolic processes, cytoskeleton, and de-ubiquitination. In conclusion, the 4-week CON and ECC training resulted in distinctly different proteomic profiles, especially in proteins related to muscular structure and metabolism.


Adaptation, Physiological , Exercise , Muscle, Skeletal , Proteomics , Resistance Training , Humans , Male , Proteomics/methods , Young Adult , Muscle, Skeletal/metabolism , Exercise/physiology , Muscle Proteins/metabolism , Body Composition , Adult , Muscle Contraction , Proteome/metabolism
14.
Natl Sci Rev ; 11(3): nwae039, 2024 Mar.
Article En | MEDLINE | ID: mdl-38549713

Mitochondria undergo fission and fusion that are critical for cell survival and cancer development, while the regulatory factors for mitochondrial dynamics remain elusive. Herein we found that RNA m6A accelerated mitochondria fusion of colorectal cancer (CRC) cells. Metabolomics analysis and function studies indicated that m6A triggered the generation of glutathione (GSH) via the upregulation of RRM2B-a p53-inducible ribonucleotide reductase subunit with anti-reactive oxygen species potential. This in turn resulted in the mitochondria fusion of CRC cells. Mechanistically, m6A methylation of A1240 at 3'UTR of RRM2B increased its mRNA stability via binding with IGF2BP2. Similarly, m6A methylation of A2212 at the coding sequence (CDS) of OPA1-an essential GTPase protein for mitochondrial inner membrane fusion-also increased mRNA stability and triggered mitochondria fusion. Targeting m6A through the methyltransferase inhibitor STM2457 or the dm6ACRISPR system significantly suppressed mitochondria fusion. In vivo and clinical data confirmed the positive roles of the m6A/mitochondrial dynamics in tumor growth and CRC progression. Collectively, m6A promoted mitochondria fusion via induction of GSH synthesis and OPA1 expression, which facilitated cancer cell growth and CRC development.

15.
Cancer Res ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38536119

The widespread use of androgen receptor (AR) signaling inhibitors has led to an increased incidence of AR-negative castration-resistant prostate cancer (CRPC), limiting effective treatment and patient survival. A more comprehensive understanding of the molecular mechanisms supporting AR-negative CRPC could reveal therapeutic vulnerabilities to improve treatment. This study showed that the transcription factor nuclear factor I/B (NFIB) was upregulated in AR-negative CRPC patient tumors and cell lines and was positively associated with an epithelial-to-mesenchymal transition (EMT) phenotype. Loss of NFIB inhibited EMT and reduced migration of CRPC cells. NFIB directly bound to gene promoters and regulated the transcription of EMT-related factors E-cadherin and vimentin, independently of other typical EMT-related transcriptional factors. In vivo data further supported the positive role of NFIB in the metastasis of AR-negative CRPC cells. Moreover, N6-methyladenosine (m6A) modification induced NFIB upregulation in AR-negative CRPC. Mechanistically, the m6A levels of mRNA, including NFIB and its E3 ubiquitin ligase TRIM8, were increased in AR-negative CRPC cells. Elevated m6A methylation of NFIB mRNA recruited YTHDF2 to increase mRNA stability and protein expression. Inversely, the m6A modification of TRIM8 mRNA, induced by ALKBH5 downregulation, decreased its translation and expression, which further promoted NFIB protein stability. Overall, this study reveals that upregulation of NFIB, mediated by m6A modification, triggers EMT and metastasis in AR-negative CRPC. Targeting the m6A/NFIB axis is a potential prevention and treatment strategy for AR-negative CRPC metastasis.

16.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 285-290, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38431838

Cerebral aneurysm can rupture a blood vessel and cause bleeding in the brain. Microsurgical clipping of the tumor neck has been reported to be effective in treating cerebral aneurysm rupture and bleeding. This research attempted to clarify the clinical efficacy of early microsurgical clipping of tumor neck for treating cerebral aneurysm rupture and bleeding, and its impact on the prognosis of patients. One hundred patients with cerebral aneurysm rupture and bleeding patients were treated. They were selected and divided into experimental group (n=25) and control group (n=25) according to surgical time. All patients underwent microsurgical clipping of tumor neck for therapy. The control group chose to undergo surgery 72 hours after the onset of cerebral aneurysm rupture and bleeding, while the experimental group chose to undergo complete surgery within 72 hours after the onset of cerebral aneurysm rupture and bleeding. Primary outcome measures were incidence of complications, cognitive function scores, prognosis, surgical indicators, oxidative stress response and quality of life. Results showed that compared to the control group, the incidence of complications in experimental group exhibited depletion (P<0.05), the prognosis in experimental group exhibited elevation (P<0.05), the hospitalization time in experimental group exhibited depletion (P<0.05), the nomination, abstraction, language, orientation, attention, delayed recall and visual and executive function scores and total scores in experimental group exhibited elevation (P<0.05), serum levels of oxidative stress-related indicators in experimental group exhibited depletion (P<0.05) and the quality of life in experimental group exhibited elevation (P<0.05). In conclusion, early microsurgical clipping of the tumor neck can reduce the risk of complications and cognitive impairment in patients with cerebral aneurysm rupture and bleeding.


Head and Neck Neoplasms , Intracranial Aneurysm , Stroke , Humans , Intracranial Aneurysm/surgery , Quality of Life , Treatment Outcome , Hemorrhage
18.
Front Public Health ; 12: 1148705, 2024.
Article En | MEDLINE | ID: mdl-38327578

Objectives: The present study analyzed the impact of the COVID-19 pandemic on the prevalence and incidence of new leprosy cases, as well as the diversity, distribution, and temporal transmission of Mycobacterium leprae strains at the county level in leprae-endemic provinces in Southwest China. Methods: A total of 219 new leprosy cases during two periods, 2018-2019 and 2020-2021, were compared. We genetically characterized 83 clinical isolates of M. leprae in Guizhou using variable number tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). The obtained genetic profiles and cluster consequences of M. leprae were compared between the two periods. Results: There was an 18.97% decrease in the number of counties and districts reporting cases. Considering the initial months (January-March) of virus emergence, the number of new cases in 2021 increased by 167% compared to 2020. The number of patients with a delay of >12 months before COVID-19 (63.56%) was significantly higher than that during COVID-19 (48.51%). Eighty-one clinical isolates (97.60%) were positive for all 17 VNTR types, whereas two (2.40%) clinical isolates were positive for 16 VNTR types. The (GTA)9, (TA)18, (TTC)21 and (TA)10 loci showed higher polymorphism than the other loci. The VNTR profile of these clinical isolates generated five clusters, among which the counties where the patients were located were adjacent or relatively close to each other. SNP typing revealed that all clinical isolates possessed the single SNP3K. Conclusion: COVID-19 may have a negative/imbalanced impact on the prevention and control measures of leprosy, which could be a considerable fact for official health departments. Isolates formed clusters among counties in Guizhou, indicating that the transmission chain remained during the epidemic and was less influenced by COVID-19 preventative policies.


COVID-19 , Leprosy , Humans , Mycobacterium leprae/genetics , Pandemics , DNA, Bacterial/genetics , COVID-19/epidemiology , Leprosy/epidemiology , Leprosy/microbiology , China/epidemiology
19.
J Clin Immunol ; 44(3): 67, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38372823

PURPOSE: Interleukin-10 receptor (IL-10R) deficiency can result in life-threatening very early-onset inflammatory bowel disease (VEO-IBD). Umbilical cord blood transplantation (UCBT) is a curative therapy for patients with IL-10R deficiency. This study aimed to investigate the efficacy of UCBT in treating IL-10R deficiency and develop a predictive model based on pre-transplant factors. METHODS: Eighty patients with IL-10R deficiency who underwent UCBT between July 2015 and April 2023 were retrospectively analyzed. Cox proportional hazards regression and random survival forest were used to develop a predictive model. RESULTS: Median age at transplant was 13.0 months (interquartile range [IQR], 8.8-25.3 months). With a median follow-up time of 29.4 months (IQR, 3.2-57.1 months), the overall survival (OS) rate was 65.0% (95% confidence interval [CI], 55.3%-76.3%). The engraftment rate was 85% (95% CI, 77%-93%). The cumulative incidences of acute and chronic graft-versus-host disease were 48.2% (95% CI, 37.1%-59.4%) and 12.2% (95% CI, 4.7%-19.8%), respectively. VEO-IBD-associated clinical symptoms were resolved in all survivors. The multivariate analysis showed that IL-6 and stool occult blood were independent prognostic risk factors. The multivariate Cox proportional hazards regression model with stool occult blood, length- or height-for-age Z-score, medical history of sepsis, and cord blood total nucleated cells showed good discrimination ability, with a bootstrap concordance index of 0.767-0.775 in predicting OS. CONCLUSION: Better inflammation control before transplantation and higher cord blood total nucleated cell levels can improve patient prognosis. The nomogram can successfully predict OS in patients with IL-10R deficiency undergoing UCBT.


Cord Blood Stem Cell Transplantation , Hematopoietic Stem Cell Transplantation , Inflammatory Bowel Diseases , Humans , Infant , Child, Preschool , Retrospective Studies , Receptors, Interleukin-10 , Inflammatory Bowel Diseases/diagnosis
20.
J Virol Methods ; 326: 114892, 2024 May.
Article En | MEDLINE | ID: mdl-38331220

Infectious hematopoietic necrosis virus (IHNV) is an economically important virus causing significant mortalities among wild and cultured salmonid fish worldwide. Rapid and sensitive diagnostic methods of IHNV are crucial for timely controlling infections. For better detection of IHNV, we have established a detection technology based on the reverse transcription and recombinase polymerase amplification (RT-RPA) and CRISPR/Cas12a to detect the N gene of IHNV in two steps. Following the screening of primer pairs, the reaction temperature and time for RPA were optimized to be 41 °C and 35 min, respectively, and the CRISPR/Cas12a reaction was performed at 37 °C for 15 min. The whole detection procedure including can be accomplished within one hour, with a detection sensitivity of about 9.5 copies/µL. The detection method exhibited high specificity with no cross-reaction to the other Novirhabdoviruses HIRRV and VHSV, allowing naked-eye interpretation of the results through lateral flow or fluorescence under ultraviolet light. Overall, our results demonstrated that the developed RT-RPA-Cas12a-mediated assay is a rapid, specific and sensitive detection method for routine and on-site detection of IHNV, which shows a great application promise for the prevention of IHNV infections.


Infectious hematopoietic necrosis virus , Animals , Infectious hematopoietic necrosis virus/genetics , CRISPR-Cas Systems , Reverse Transcription , Recombinases/genetics
...