Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Environ Int ; 191: 109001, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39284259

RESUMEN

Carbon black nanoparticles (CBNPs) have been demonstrated to induce DNA damage in epithelial cells. However, the potential of the damage to initiate carcinogenesis and the underlying mechanism remain poorly understood. Therefore, we constructed an in vitro model of malignant transformation of human bronchial epithelial cells (16HBE-T) by treating 40 µg/mL CBNPs for 120 passages. We observed tumor-like transformation and sustained DNA damage. Using transcriptome sequencing and RIP-seq, we identified the overexpression of the critical DNA mismatch repair genes MutS homolog 2 (MSH2) and its related circular RNA, circ_0025373, in the 16HBE-T cells. Mechanistically, circ_0025373 was found to inhibit DNA damage by binding to MSH2, thereby modifying its expression and influencing its nuclear and cytoplasmic distribution, which lead to inhibition of CBNP-induced malignant transformation of human bronchial epithelial cells. Our findings provide novel evidence on the carcinogenicity of CBNPs, and offer biological insights into the potential epigenetic regulation and potential therapeutic targets for lung carcinogenesis.


Asunto(s)
Bronquios , Transformación Celular Neoplásica , Daño del ADN , Células Epiteliales , Proteína 2 Homóloga a MutS , Nanopartículas , Hollín , Humanos , Proteína 2 Homóloga a MutS/metabolismo , Proteína 2 Homóloga a MutS/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Hollín/toxicidad , Nanopartículas/química , Bronquios/patología , ARN Circular/genética , ARN Circular/metabolismo , Línea Celular
2.
Artículo en Inglés | MEDLINE | ID: mdl-39147218

RESUMEN

BACKGROUND & AIMS: Archaea constitute one of the main 3 domains of the tree of life, distinct from eukaryotes and bacteria. Excessive luminal loads of methanogenic archaea (intestinal methanogen overgrowth [IMO]) have been implicated in the pathophysiology of various diseases, including constipation. To elucidate the phenotypical presentation of IMO, we performed a systematic review and meta-analysis of the prevalence and severity of gastrointestinal symptoms in subjects with IMO as compared with subjects without IMO. METHODS: Electronic databases, including OVID MEDLINE and Cochrane Database from inception until September 2023, were systematically searched. Prevalence rates, odds ratios (ORs), standardized mean difference (SMD), and 95% confidence intervals (CIs) of symptoms were calculated. RESULTS: Nineteen studies were included (1293 patients with IMO and 3208 controls). Patients with IMO exhibited various gastrointestinal symptoms, including bloating (78%), constipation (51%), diarrhea (33%), abdominal pain (65%), nausea (30%), and flatulence (56%). Patients with IMO had a significantly higher prevalence of constipation as compared with controls (47% vs 38%; OR, 2.04; 95% CI, 1.48-2.83; P < .0001) along with lower prevalence of diarrhea (37% vs 52%; OR, 0.58; 95% CI, 0.37-0.90; P = .01) and nausea (32% vs 45%; OR, 0.75; 95% CI, 0.60-0.94; P = .01). Patients with IMO had higher severity of constipation (SMD, 0.77; 95% CI, 0.11-1.43; P = .02) and lower severity of diarrhea (SMD, -0.71; 95% CI, -1.39 to -0.03; P = .04). Significant heterogeneity was detected. CONCLUSION: Patients with IMO exhibit a higher rate and severity of constipation along with lower rate and severity of diarrhea. The distinct phenotype of patients with IMO should be incorporated in patient-reported outcome measures and further correlated with mechanistic microbiome studies.

3.
Phytomedicine ; 133: 155920, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126922

RESUMEN

BACKGROUND: POI (premature ovarian insufficiency) refers to premature and rapid decline of ovarian reserve function in women before the age of 40, which can be manifested as menstrual disorders, endocrine abnormalities and low fertility. Bu-Shen-Ning-Xin decoction (BSNXD) has been found to have therapeutic effects on POI. Nevertheless, how it exerts therapeutic effects remains elusive. PURPOSE: This research aims to clarify the pharmacological mechanisms of BSNXD. METHODS: We applied Ultra Performance Liquid Chromatography (UPLC) to identify the main components of BSNXD.4-vinylcyclohexene diepoxide(VCD)was used to induce POI models. ELISA detected the serum level of hormones. H&E staining evaluated the morphology of ovarian tissues.CircRNA and mRNA expression profiles in the ovaries of both POI rats and those treated with BSNXD were detected. Then, dysregulated circRNAs and mRNAs that were potentially altered by BSNXD were screened. Network pharmacology analysis was performed to identify drug targets of BSNXD active ingredients. A circRNA-miRNA-mRNA network and an oxidative stress(OS)-related subnetwork were constructed. Expression of rno_circRNA_012284, rno_miR-760-3p, and HBEGF(Heparin-binding epidermal growth factor-like growth factor) was measured by RT-PCR and their binding were verified by dual-luciferase reporter assays. ROS was measured through DCFH-DA fluorescence probes. The HBEGF target was selected for molecular docking with key active ingredients.Surface plasmon resonance(SPR) was applied to verify the binding ability and affinity between components and HBEGF. RESULTS: UPLC analysis indicated that 6 chemical compounds including berberine, paeoniflorin, morroniside,gallic acid, loganin, baicalin were identified.Elevated FSH and LH levels, suppressed E2 and AMH levels in the serum, and inhibited follicles and corpus luteums in the ovarian tissues of VCD-induced rats were notably reversed by BSNXD.In total, 992 up- and 1135 down-regulated circRNAs, and 205 up- and 243 down-regulated mRNAs were found in POI rat ovaries following BSNXD administration. Furthermore, 198 drug targets of BSNXD were identified. An OS-related and BSNXD-targeted ceRNA subnetwork composed of rno_circRNA_012284/rno_miR-760-3p/HBEGF was established. rno_circRNA_012284 and HBEGF were up-regulated and rno_miR-760-3p was down-regulated in POI ovarian granulosa cells (OGCs) after BSNXD administration. rno_circRNA_012284 was a sponge of rno_miR-760-3p to elevate HBEGF expression. Moreover, rno_circRNA_012284 overexpression alleviated POI-induced excessive ROS generation in ovarian granulosa cells, while rno_circRNA_012284 inhibition exerted the opposite effect. Finally,molecular docking speculated active ingredients of each herb acted on HBEGF to reduce the OS. SPR tests showed that Berberine,Baicalein,Quercetin,Pachymic acid,Paeoniflorin exhibited satisfying affinity with HBEGF protein. CONCLUSION: This study demonstrates that BSNXD ameliorates POI partly by attenuating OS in ovarian granulosa cells via rno_circRNA_012284/rno_miR-760-3p/HBEGF axis, uncovering the pharmacological mechanisms of BSNXD in alleviating POI.


Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , Estrés Oxidativo , Insuficiencia Ovárica Primaria , ARN Circular , Animales , Femenino , Ratas , Ciclohexenos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , MicroARNs/metabolismo , MicroARNs/genética , Ovario/efectos de los fármacos , Ovario/metabolismo , Estrés Oxidativo/efectos de los fármacos , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/genética , Ratas Sprague-Dawley , ARN Circular/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Compuestos de Vinilo/farmacología
4.
Adv Mater ; : e2407070, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091051

RESUMEN

Single-atom catalysts (SACs) have been increasingly explored in lithium-sulfur (Li-S) batteries to address the issues of severe polysulfide shuttle effects and sluggish redox kinetics. However, the structure-activity relationship between single-atom coordination structures and the performance of Li-S batteries remain unclear. In this study, a P, S co-coordination asymmetric configuration of single atoms is designed to enhance the catalytic activity of Co central atoms and promote d-p orbital hybridization between Co and S atoms, thereby limiting polysulfides and accelerating the bidirectional redox process of sulfur. The well-designed SACs enable Li-S batteries to demonstrate an ultralow capacity fading rate of 0.027% per cycle after 2000 cycles at a high rate of 5 C. Furthermore, they display excellent rate performance with a capacity of 619 mAh g-1 at an ultrahigh rate of 10 C due to the efficient catalysis of CoSA-N3PS. Importantly, the assembled pouch cell still retains a high discharge capacity of 660 mAh g-1 after 100 cycles at 0.2 C and provides a high areal capacity of 4.4 mAh cm-2 even with a high sulfur loading of 6 mg cm-2. This work demonstrates that regulating the coordination environment of SACs is of great significance for achieving state-of-the-art Li-S batteries.

5.
Pharmaceutics ; 16(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065623

RESUMEN

Nasal administration is a non-invasive method of drug delivery that offers several advantages, including rapid onset of action, ease of use, no first-pass effect, and fewer side effects. On this basis, nose-to-brain delivery technology offers a new method for drug delivery to the brain and central nervous system, which has attracted widespread attention. In this paper, the development status and trends of nasal drug delivery and nose-to-brain delivery technology are deeply analyzed through multiple dimensions: literature research, questionnaire surveys, and patent analysis. First, FDA-approved nasal formulations for nose-to-brain delivery were combed. Second, we collected a large amount of relevant information about nasal drug delivery through a questionnaire survey of 165 pharmaceutical industry practitioners in 28 provinces and 161 different organizations in China. Third, and most importantly, we conducted a patent analysis of approximately 700+ patents related to nose-to-brain delivery, both domestically and internationally. This analysis was conducted in terms of patent application trends, technology life cycle, technology composition, and technology evolution. The LDA topic model was employed to identify technological topics in each time window (1990-2023), and the five key major evolution paths were extracted. The research results in this paper will provide useful references for relevant researchers and enterprises in the pharmaceutical industry, promoting the further development and application of nasal drug delivery and nose-to-brain delivery technology.

6.
Materials (Basel) ; 17(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063856

RESUMEN

In recent years, wind energy has begun to receive a significant amount of attention as clean energy is utilised and demanded in large quantities, resulting in a sharp increase in the use of wind turbines. The demand for wind turbines has gradually risen due to the clean and recyclable nature of wind energy. The current blade life of wind turbines in China is about 20 years, which means that the disposal of obsolete used blades can become a difficult problem in the future. Therefore, this study is of great significance to explore the regeneration performance of the blades after recycling and disposal. In this paper, wind turbine blades were mechanically recycled into recycled macrofibres, which were added to concrete as a reinforcing material to make wind impeller fibre concrete (WIC), and the three proportion ratios of 1%, 1.5%, and 2% were explored to compare the performance. The performance of WIC was also evaluated and its performance was compared to that of glass fibre concrete (GC). In addition, the material physical properties of second-generation recycled aggregate concrete (RAC) based on WIC were explored. The strength and peak strain variations and their causal mechanisms were analysed both macroscopically and microscopically by means of the classical mechanical tests (compression and bending tests), SEM, and XRD. The results show that the compressive strength of WIC was negatively correlated with the fibre content and increased by 6.04-18.12% compared to that of ordinary concrete (OG), with a maximum of 19.25 MPa; the flexural strength was positively correlated with the fibre content, with an increase of 5.37-18.5%. The microstructural analysis confirmed the macroscopic results and the intrinsic model better validated the experimental results.

7.
New Phytol ; 243(6): 2332-2350, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39056291

RESUMEN

Protein posttranslational modifications play crucial roles in plant immunity through modulating a complicated signaling network mediated by different hormones. We previously demonstrated that OsATL32, an ATL-type E3 ligase, negatively contributes to rice immunity against Magnaporthe oryzae. Here, we show that OsATL32 forms a loop with OsPPKL2 and OsGSK2 through distinct protein posttranslational modifications to modulate rice immunity. OsATL32 ubiquitinates OsPPKL2, a protein phosphatase with Kelch-like repeat domains that exerts positive roles in regulating rice immunity against M. oryzae and chitin-triggered immune responses, for degradation. The glycogen synthase kinase 2 (OsGSK2), which acts as a negative regulator of rice immunity against M. oryzae and chitin-triggered immune responses, phosphorylates OsATL32 to elevate its protein stability and E3 ligase activity on OsPPKL2. Moreover, OsPPKL2 directly dephosphorylates OsGSK2, affecting its kinase activity on substrates including OsATL32 for phosphorylation. Like OsGSK2 as a BR signaling repressor, OsATL32 negatively regulates BR signaling; conversely, OsPPKL2 plays a positive role in BR signaling. These findings provide a molecular mechanism in which OsATL32 serves as a node connecting BR signaling and immunity by associating with OsPPKL2 and OsGSK2, assembling into a distinct protein posttranslational modifications-linked loop that functions in rice BR signaling and immunity.


Asunto(s)
Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Procesamiento Proteico-Postraduccional , Oryza/genética , Oryza/inmunología , Oryza/microbiología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Fosforilación , Ubiquitinación , Transducción de Señal , Magnaporthe/fisiología , Brasinoesteroides/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Regulación de la Expresión Génica de las Plantas , Quitina/metabolismo , Glucógeno Sintasa Quinasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Ascomicetos
8.
Small ; : e2402325, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822721

RESUMEN

In the search for next-generation green energy storage solutions, Cu-S electrochemistry has recently gained attraction from the battery community owing to its affordability and exceptionally high specific capacity of 3350 mAh gs -1. However, the inferior conductivity and substantial volume expansion of the S cathode hinder its cycling stability, while the low output voltage limits its energy density. Herein, a hollow carbon sphere (HCS) is synthesized as a 3D conductive host to achieve a stable S@HCS cathode, which enables an outstanding cycling performance of 2500 cycles (over 9 months). To address the latter, a Zn//S@HCS alkaline-acid decoupled cell is configured to increase the output voltage from 0.18 to 1.6 V. Moreover, an electrode and electrolyte co-energy storage mechanism is proposed to offset the reduction in energy density resulting from the extra electrolyte required in Zn//S decoupled cells. When combined, the Zn//S@HCS alkaline-acid decoupled cell delivers a record energy density of 334 Wh kg-1 based on the mass of the S cathode and CuSO4 electrolyte. This work tackles the key challenges of Cu-S electrochemistry and brings new insights into the rational design of decoupled batteries.

9.
Front Microbiol ; 15: 1397688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690366

RESUMEN

Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is a kind of post-translational protein modification that is involved in various cellular processes in fungi, plants, and mammals. However, the function of PARPs in plant pathogenic fungi remains unknown. The present study investigated the roles and mechanisms of FonPARP1 in watermelon Fusarium wilt fungus Fusarium oxysporum f. sp. niveum (Fon). Fon has a single PARP FonPARP1 and one PARG FonPARG1. FonPARP1 is an active PARP and contributes to Fon pathogenicity through regulating its invasive growth within watermelon plants, while FonPARG1 is not required for Fon pathogenicity. A serine/threonine protein kinase, FonKin4, was identified as a FonPARP1-interacting partner by LC-MS/MS. FonKin4 is required for vegetative growth, conidiation, macroconidia morphology, abiotic stress response and pathogenicity of Fon. The S_TKc domain is sufficient for both enzyme activity and pathogenicity function of FonKin4 in Fon. FonKin4 phosphorylates FonPARP1 in vitro to enhance its poly(ADP-ribose) polymerase activity; however, FonPARP1 does not PARylate FonKin4. These results establish the FonKin4-FonPARP1 phosphorylation cascade that positively contributes to Fon pathogenicity. The present study highlights the importance of PARP-catalyzed protein PARylation in regulating the pathogenicity of Fon and other plant pathogenic fungi.

10.
Heliyon ; 10(10): e31365, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38818193

RESUMEN

Goupi plaster, a representative preparation of black plaster, has demonstrated promising effects in treating knee osteoarthritis. However, high temperature used in traditional frying extraction may cause decomposition of its effective components, thus limiting the efficacy. This study aimed to explore the scientific nature of the traditional preparation technology of Goupi plaster, and to compare the effects of different extraction methods on the types of chemical components and the content of index components. The UPLC-Q-Exactive-MS and UPLC-MS/MS technologies which have high efficiency, sensitivity and accuracy, were used to qualitatively and quantitatively analyze the chemical components of Goupi plaster under different preparation processes. The results show that the extraction solvent approach is different from the traditional frying extraction method, and has a positive effect. However, the mechanism of action of Goupi plaster is complex and its pharmacological effects are diverse. Future studies should explore whether it necessary to change the frying extraction method. This experiment provides a theoretical basis that will guide further scientific discussion and research into the frying extraction of Goupi plaster.

11.
Diagn Pathol ; 19(1): 70, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796421

RESUMEN

IDH1 and IDH2 mutational status is a critical biomarker with diagnostic, prognostic, and treatment implications in glioma. Although IDH1 p.R132H-specific immunohistochemistry is available, it is unable to identify other mutations in IDH1/2. Next-generation sequencing can accurately determine IDH1/2 mutational status but suffers from long turnaround time when urgent treatment planning and initiation is medically necessary. The Idylla assay can detect IDH1/2 mutational status from unstained formalin-fixed paraffin-embedded (FFPE) slides in as little as a few hours. In a clinical validation, we demonstrate clinical accuracy of 97% compared to next-generation sequencing. Sensitivity studies demonstrated a limit of detection of 2.5-5% variant allele frequency, even at DNA inputs below the manufacturer's recommended threshold. Overall, the assay is an effective and accurate method for rapid determination of IDH1/2 mutational status.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/enzimología , Análisis Mutacional de ADN/métodos , Adhesión en Parafina , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Formaldehído , Fijación del Tejido/métodos , Reproducibilidad de los Resultados
12.
J Integr Plant Biol ; 66(7): 1459-1480, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38629772

RESUMEN

Ubiquitination-mediated protein degradation is integral to plant immunity, with E3 ubiquitin ligases acting as key factors in this process. Here, we report the functions of OsATL32, a plasma membrane-localized Arabidopsis Tóxicos En Levadura (ATL)-type E3 ubiquitin ligase, in rice (Oryza sativa) immunity and its associated regulatory network. We found that the expression of OsATL32 is downregulated in both compatible and incompatible interactions between rice and the rice blast fungus Magnaporthe oryzae. The OsATL32 protein level declines in response to infection by a compatible M. oryzae strain or to chitin treatment. OsATL32 negatively regulates rice resistance to blast and bacterial leaf blight diseases, as well as chitin-triggered immunity. Biochemical and genetic studies revealed that OsATL32 suppresses pathogen-induced reactive oxygen species (ROS) accumulation by mediating ubiquitination and degradation of the ROS-producing OsRac5-OsRbohB module, which enhances rice immunity against M. oryzae. The protein phosphatase PHOSPHATASE AND TENSIN HOMOLOG enhances rice blast resistance by dephosphorylating OsATL32 and promoting its degradation, preventing its negative effect on rice immunity. This study provides insights into the molecular mechanism by which the E3 ligase OsATL32 targets a ROS-producing module to undermine rice immunity.


Asunto(s)
Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Especies Reactivas de Oxígeno , Ubiquitinación , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Oryza/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética , Ascomicetos
13.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38543083

RESUMEN

Intestinal mucositis (IM) is a common adverse effect of chemotherapy, limiting its clinical application. Codonopsis pilosula-derived CP-A (an inulin-type fructan) is an edible Chinese medicine with anti-inflammatory and gastrointestinal protective effects, which may be useful for treating IM. Here, we explored CP-A's role in ameliorating IM induced by 5-fluorouracil (5-FU) and investigated the underlying mechanism using in vitro experiments and rat models. Western blotting, immunohistochemistry (IHC), and real-time PCR (RT-PCR) analyses were used to assess protein expression related to the extracellular-regulated protein kinases (ERK)/myosin light chain kinase (MLCK)/myosin light chain 2 (MLC2) signaling pathway and tight junction proteins. Inflammatory factors were quantified using enzyme-linked immunosorbent assays (ELISAs), and 16S rRNA amplicon sequencing was employed for cecum content analysis. The results indicated that CP-A restored body weight and food intake and reversed histopathological changes in IM rats. Further, abnormal MLCK activation induced by 5-FU was attenuated by CP-A via the ERK/MLCK/MLC2 pathway. CP-A treatment improved tight junction protein levels and reduced inflammatory factor expression. Moreover, CP-A intervention regulated the intestinal microbiota community structure, increasing the abundance of Lactobacillus and decreasing the abundance of Shigella. In conclusion, CP-A mitigates 5-FU-induced IM by inhibiting the ERK/MLCK/MLC2 pathway, reducing the expression of inflammatory factors, improving the intestinal mucosal barrier, and regulating the intestinal microbial community. This study highlights CP-A's therapeutic potential in IM treatment and provides insights for future research.

14.
Chin J Nat Med ; 22(3): 249-264, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38553192

RESUMEN

Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1ß, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1ß, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.


Asunto(s)
Codonopsis , Colitis Ulcerosa , Colitis , Ratones , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inulina/metabolismo , Inulina/farmacología , Inulina/uso terapéutico , Interleucina-18 , Codonopsis/metabolismo , Proteínas NLR/metabolismo , Fructanos/metabolismo , Fructanos/farmacología , Fructanos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Claudina-1/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Autofagia , Sulfato de Dextran , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon/metabolismo , Colon/patología
15.
Microbiol Res ; 281: 127632, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38310728

RESUMEN

SUMOylation is a key post-translational modification, where small ubiquitin-related modifier (SUMO) proteins regulate crucial biological processes, including pathogenesis, in phytopathogenic fungi. Here, we investigated the function and mechanism of the SUMOylation pathway in the pathogenicity of Fusarium oxysporum f. sp. niveum (Fon), the fungal pathogen that causes watermelon Fusarium wilt. Disruption of key SUMOylation pathway genes, FonSMT3, FonAOS1, FonUBC9, and FonMMS21, significantly reduced pathogenicity, impaired penetration ability, and attenuated invasive growth capacity of Fon. Transcription and proteomic analyses identified a diverse set of SUMOylation-regulated differentially expressed genes and putative FonSMT3-targeted proteins, which are predicted to be involved in infection, DNA damage repair, programmed cell death, reproduction, growth, and development. Among 155 putative FonSMT3-targeted proteins, FonPalC, a Pal/Rim-pH signaling regulator, was confirmed to be SUMOylated. The FonPalC protein accumulation was significantly decreased in SUMOylation-deficient mutant ∆Fonsmt3. Deletion of FonPalC resulted in impaired mycelial growth, decreased pathogenicity, enhanced osmosensitivity, and increased intracellular vacuolation in Fon. Importantly, mutations in conserved SUMOylation sites of FonPalC failed to restore the defects in ∆Fonpalc mutant, indicating the critical function of the SUMOylation in FonPalC stability and Fon pathogenicity. Identifying key SUMOylation-regulated pathogenicity-related proteins provides novel insights into the molecular mechanisms underlying Fon pathogenesis regulated by SUMOylation.


Asunto(s)
Citrullus , Fusarium , Citrullus/genética , Citrullus/microbiología , Proteómica , Sumoilación , Virulencia/genética , Concentración de Iones de Hidrógeno , Enfermedades de las Plantas/microbiología
16.
J Agric Food Chem ; 72(11): 5542-5554, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377578

RESUMEN

Food safety concerns have become a significant threat to human health and well-being, catching global attention in recent years. As a result, it is imperative to research conceptually novel biosensing and effective techniques for food matrices detection. Currently, DNA-templated metal nanoclusters (DNA-MNCs) are considered as one of the most promising nanomaterials due to their excellent properties in biosensing. While DNA-MNCs have garnered increasing interest, the reviews of design strategies, applications, and futuristic prospects for biosensing have been hardly found especially in food safety. The synthesis of DNA-MNCs and their use as biosensing materials in food contamination detection, including pathogenic bacteria, toxins, heavy metals, residues of pesticides, and others were comprehensively reviewed. In addition, we summarize the properties of DNA-MNCs briefly and discuss the challenges and future trends. The application of DNA-MNCs powered biosensing has been demonstrated and actively studied, which is a promising paradigm for food safety testing that can supplement or even replace current existing methods. Despite the challenges of difficulty regulating accurately, poor stability, low quantum yield, and difficult commercial transformation, the application prospects of DNA-MNCs biosensors are promising. This review aims to provide insights and directions for the future development of DNA-MNCs based food detection technology.


Asunto(s)
Técnicas Biosensibles , Metales Pesados , Nanoestructuras , Plaguicidas , Humanos , Inocuidad de los Alimentos , ADN/genética , ADN/química , Nanoestructuras/química , Técnicas Biosensibles/métodos
17.
J Neurogastroenterol Motil ; 30(1): 7-16, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38173154

RESUMEN

Background/Aims: We performed a systematic review and meta-analysis evaluating the symptomatic response rate to antibiotics in patients with small intestinal bacterial overgrowth (SIBO). Similarly, we performed a meta-analysis on the symptomatic response to antibiotics in irritable bowel syndrome (IBS) patients with and without SIBO. Methods: MEDLINE, EMBASE, Web of Science, and Cochrane databases were searched from inception to March 2021. Randomized controlled trials and prospective studies reporting dichotomous outcomes were included. Results: There were 6 studies included in the first meta-analysis comparing the efficacy of antibiotics to placebo or no antibiotic. This included 196 patients, of whom 101 received antibiotics and 95 received placebo or no antibiotics. Significantly more patients improved with antibiotics (relative risk [95% CI] = 2.46 [1.33-4.55], P = 0.004). There were 4 studies included in the analysis comparing symptomatic response rates in IBS patients with or without SIBO with 266 IBS patients, of whom 172 had SIBO and 94 did not. The pooled response rate for symptomatic response was 51.2% in the SIBO group vs 23.4% in the no SIBO group, respectively. Significantly more IBS patients with SIBO responded to antibiotics compared to those without SIBO (relative risk [95% CI] = 2.07 [1.40-3.08], P = 0.0003). Conclusions: Antibiotics appear to be efficacious in treating SIBO, although small sample sizes and poor data quality limit this interpretation. Symptomatic response rates also appear to be higher in IBS patients with SIBO. This may be the first example of precision medicine in IBS as opposed to our current empiric treatment approach. Large-multicenter studies are needed to verify the results.

18.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G216-G227, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38193197

RESUMEN

Ulcerative colitis (UC) is an inflammatory disease with abdominal pain, diarrhea, and bloody stool as the main symptoms. Several studies have confirmed that polysaccharides are effective against UC. It is commonly accepted that the traditional benefits of Radix Codonopsis can be attributed to its polysaccharide contents, and inulin-type fructan CP-A is the main active monomer in the polysaccharide components. Herein, we established a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC rat model and lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) to investigate the effect of CP-A on UC. Untargeted metabolomics studies were conducted to identify differential metabolites using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) and enrich metabolic pathways in rat serum. The in vivo assays demonstrated that CP-A reduces colonic macroscopic injury, disease activity index (DAI), histopathological score, interleukin (IL)-8, and tumor necrosis factor-α (TNF-α) levels, as well as the expression of intercellular adhesion molecules. On the other hand, CP-A increases IL-10 and transforming growth factor-ß (TGF-ß) levels. The in vitro experiments indicated that CP-A treatment could reduce nitric oxide (NO) and IL-1ß after LPS stimulation. The metabolomics results suggested that CP-A therapy for UC may be related to the mammalian target of rapamycin (mTOR) signaling pathway. The in vitro and in vivo validation of the pathway showed similar results, indicating that CP-A alleviates UC by preventing the activation of mTOR/p70S6K signaling pathway. These findings offer a fresh approach to treating UC and a theoretical foundation for the future advancement of CP-A.NEW & NOTEWORTHY We report that an inulin-type fructan from Codonopsis pilosula CP-A exhibits a therapeutic effect on experimental colitis. Its mechanism may be to alleviate intestinal inflammation by preventing the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling pathway. These findings offer a fresh approach to treating ulcerative colitis (UC) and a theoretical foundation for the future advancement of CP-A.


Asunto(s)
Codonopsis , Colitis Ulcerosa , Colitis , Ratas , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Inulina/farmacología , Fructanos/efectos adversos , Fructanos/química , Codonopsis/química , Proteínas Quinasas S6 Ribosómicas 70-kDa/uso terapéutico , Ácidos Sulfónicos/efectos adversos , Lipopolisacáridos , Polisacáridos , Serina-Treonina Quinasas TOR , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Modelos Animales de Enfermedad , Mamíferos
19.
Biomed Pharmacother ; 171: 116071, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183741

RESUMEN

Sphingolipids (SPLs) represent a highly diverse and structurally complex lipid class. The discussion of SPL metabolism-related issues is of importance in understanding the neuropathological progression of Alzheimer's disease (AD). AD is characterized by the accumulation of extracellular deposits of the amyloid ß-peptide (Aß) and intraneuronal aggregates of the microtubule-associated protein tau. Critical roles of Aß oligomer deposited and ganglioside GM1 could be formed as "seed" from insoluble GAß polymer in initiating the pathogenic process, while tau might also mediate SPLs and their toxicity. The interaction between ceramide and α-Synuclein (α-Syn) accelerates the aggregation of ferroptosis and exacerbates the pathogenesis of AD. For instance, reducing the levels of SPLs can mitigate α-Syn accumulation and inhibit AD progression. Meanwhile, loss of SPLs may inhibit the expression of APOE4 and confer protection against AD, while the loss of APOE4 expression also disrupts SPLs homeostasis. Moreover, the heightened activation of sphingomyelinase promotes the ferroptosis signaling pathway, leading to exacerbated AD symptoms. Ferroptosis plays a vital role in the pathological progression of AD by influencing Aß, tau, APOE, and α-Syn. Conversely, the development of AD also exacerbates the manifestation of ferroptosis and SPLs. We are compiling the emerging techniques (Derivatization and IM-MS) of sphingolipidomics, to overcome the challenges of AD diagnosis and treatment. In this review, we examined the intricate neuro-mechanistic interactions between SPLs and Aß, tau, α-Syn, APOE, and ferroptosis, mediating the onset of AD. Furthermore, our findings highlight the potential of targeting SPLs as underexplored avenue for devising innovative therapeutic strategies against AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4 , Esfingolípidos , Proteínas tau/metabolismo , Ceramidas
20.
Curr Med Chem ; 31(12): 1539-1560, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37680151

RESUMEN

BACKGROUND: RNA methylation modification is not only intimately interrelated with cancer development and progression but also actively influences immune cell infiltration in the tumor microenvironment (TME). RNA methylation modification genes influence the therapeutic progression of lung adenocarcinoma (LUAD), and mining RNA methylation modification prognosis-related markers in LUAD is crucial for its precise prognosis. METHODS: RNA-Seq data and Gene sets were collected from online databases or published literature. Genomic variation analysis was conducted by the Maftools package. RNA methylation-immune-related lncRNAs were obtained by Pearson correlation analysis. Then, Consistent clustering analysis was performed to obtain RNA methylation modification- immune molecular subtypes (RMM-I Molecular subtypes) in LUAD based on selected lncRNAs. COX and random survival forest analysis were carried out to construct the RMM-I Score. The receiver operating characteristic (ROC) curve and Kaplan Meier survival analysis were used to assess survival differences. Tumor immune microenvironment was assessed through related gene signatures and CIBERSORT algorithm. In addition, drug sensitivity analysis was executed by the pRRophetic package. RESULTS: Four RNA methylation modified-immune molecular subtypes (RMM-I1, RMM- I2, RMM-I3, RMM-I4) were presented in LUAD. Patients in RMM-I4 exhibited excellent survival advantages and immune activity. HAVCR2, CD274, and CTLA-4 expression were activated in RMM-I4, which might be heat tumors and a potential beneficial group for immunotherapy. OGFRP1, LINC01116, DLGAP1-AS2, CRNDE, LINC01137, MIR210HG, and CYP1B1-AS1 comprised the RMM-I Score. The RMM-I Score exhibited excellent accuracy in the prognostic assessment of LUAD, as patients with a low RMM- I Score exhibited remarkable survival advantage. Patients with a low RMM-I score might be more sensitive to treatment with Docetaxel, Vinorelbine, Paclitaxel, Cisplatin, and immunotherapy. CONCLUSION: The RMM-I molecular subtype constituted the novel molecular characteristic subtype of LUAD, which complemented the existing pathological typing. More refined and accurate molecular subtypes provide help to reveal the mechanism of LUAD development. In addition, the RMM-I score offers a reliable tool for accurate prognosis of LUAD.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Metilación de ARN , ARN Largo no Codificante/genética , Pronóstico , Pulmón , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA