Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2401834121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976739

RESUMEN

Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide, but the underlying molecular mechanisms remain largely unclear. The transcription factor (TF) specificity protein 1 (SP1) plays a crucial role in the development of various cancers, including LUAD. Recent studies have indicated that master TFs may form phase-separated macromolecular condensates to promote super-enhancer (SE) assembly and oncogene expression. In this study, we demonstrated that SP1 undergoes phase separation and that its zinc finger 3 in the DNA-binding domain is essential for this process. Through Cleavage Under Targets & Release Using Nuclease (CUT&RUN) using antibodies against SP1 and H3K27ac, we found a significant correlation between SP1 enrichment and SE elements, identified the regulator of the G protein signaling 20 (RGS20) gene as the most likely target regulated by SP1 through SE mechanisms, and verified this finding using different approaches. The oncogenic activity of SP1 relies on its phase separation ability and RGS20 gene activation, which can be abolished by glycogen synthase kinase J4 (GSK-J4), a demethylase inhibitor. Together, our findings provide evidence that SP1 regulates its target oncogene expression through phase separation and SE mechanisms, thereby promoting LUAD cell progression. This study also revealed an innovative target for LUAD therapies through intervening in SP1-mediated SE formation.


Asunto(s)
Adenocarcinoma del Pulmón , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Proteínas RGS , Factor de Transcripción Sp1 , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Humanos , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Proteínas RGS/metabolismo , Proteínas RGS/genética , Línea Celular Tumoral , Animales , Elementos de Facilitación Genéticos , Progresión de la Enfermedad , Ratones , Separación de Fases
2.
Artículo en Inglés | MEDLINE | ID: mdl-38968001

RESUMEN

There is an urgent need to develop phototherapeutic agents with imaging capabilities to assess the treatment process and efficacy in real-time during cancer phototherapy for precision cancer therapy. The safe near-infrared (NIR) fluorescent dyes have garnered significant attention and are desirable for theranostics agents. However, until now, achieving excellent photostability and fluorescence (FL) imaging capability in aggregation-caused quenching (ACQ) dyes remains a big challenge. Here, for the only FDA-approved NIR dye, indocyanine green (ICG), we developed a dual-ferrocene (Fc) chimeric nanonetwork ICG@HFFC based on the rigid-flexible strategy through one-step self-assembly, which uses rigid Fc-modified hyaluronic acid (HA) copolymer (HA-Fc) and flexible octadecylamine (ODA) bonded Fc (Fc-C18) as the delivery system. HA-Fc reserved the ability of HA to target the CD44 receptor of the tumor cell surface, and the dual-Fc region provided a rigid space for securely binding ICG through metal-ligand interaction and π-π conjugation, ensuring excellent photostability. Additionally, the alkyl chain provided flexible confinement for the remaining ICG through hydrophobic forces, preserving its FL. Thereby, a balance is achieved between outstanding photostability and FL imaging capability. In vitro studies showed improved photobleaching resistance, enhanced FL stability, and increased singlet oxygen (1O2) production efficiency in ICG@HFFC. Further in vivo results display that ICG@HFFC had good tumor tracing ability and significant tumor inhibition which also exhibited good biocompatibility.. Therefore, ICG@HFFC provides an encouraging strategy to realize simultaneous enhanced tumor tracing and photothermal/photodynamic therapy (PTT/PDT) and offers a novel approach to address the limitations of ACQ dyes.

3.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38932046

RESUMEN

Self-vibrating systems obtaining energy from their surroundings to sustain motion can offer great potential in micro-robots, biomedicine, radar systems, and amusement equipment owing to their adaptability, efficiency, and sustainability. However, there is a growing need for simpler, faster-responding, and easier-to-control systems. In the study, we theoretically present an advanced light-actuated liquid crystal elastomer (LCE) fiber-mass system which can initiate self-sliding motion along a rigid circular track under constant light exposure. Based on an LCE dynamic model and the theorem of angular momentum, the equations for dynamic control of the system are deduced to investigate the dynamic behavior of self-sliding. Numerical analyses show that the theoretical LCE fiber-mass system operates in two distinct states: a static state and a self-sliding state. The impact of various dimensionless variables on the self-sliding amplitude and frequency is further investigated, specifically considering variables like light intensity, initial tangential velocity, the angle of the non-illuminated zone, and the inherent properties of the LCE material. For every increment of π/180 in the amplitude, the elastic coefficient increases by 0.25% and the angle of the non-illuminated zone by 1.63%, while the light intensity contributes to a 20.88% increase. Our findings reveal that, under constant light exposure, the mass element exhibits a robust self-sliding response, indicating its potential for use in energy harvesting and other applications that require sustained periodic motion. Additionally, this system can be extended to other non-circular curved tracks, highlighting its adaptability and versatility.

4.
Int J Neural Syst ; : 2450047, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38864575

RESUMEN

While many seizure detection methods have demonstrated great accuracy, their training necessitates a substantial volume of labeled data. To address this issue, we propose a novel method for unsupervised seizure anomaly detection called SAnoDDPM, which uses denoising diffusion probabilistic models (DDPM). We designed a novel pipeline that uses a variable lower bound on Markov chains to identify potential values that are unlikely to occur in anomalous data. The model is first trained on normal data, then anomalous data is input to the trained model. The model resamples the anomalous data and converts it to normal data. Finally, the presence of seizures can be determined by comparing the before and after data. Moreover, the input 2D spectrograms are encoded into vector-quantized representations, which enables powerful and efficient DDPM while maintaining its quality. Experimental comparisons on the publicly available datasets, CHB-MIT and TUH, show that our method delivers better results, significantly reduces inference time, and is suitable for deployment in a clinical environments. As far as we are aware, this is the first DDPM-based method for seizure anomaly detection. This novel approach significantly contributes to the progression of seizure detection algorithms, thereby augmenting their practicality in clinical settings.

5.
Environ Res ; 256: 119245, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810821

RESUMEN

Microalgae have been renowned as the most promising energy organism with significant potential in carbon fixation. In the large-scale cultivation of microalgae, the 3D porous substrate with higher specific surface area is favorable to microalgae adsorption and biofilm formation, whereas difficult for biofilm detachment and microalgae harvesting. To solve this contradiction, N-isopropylacrylamide, a temperature-responsive gels material, was grafted onto the inner surface of the 3D porous substrate to form temperature-controllable interface wettability. The interfacial free energy between microalgae biofilm and the substrates increased from -63.02 mJ/m2 to -31.89 mJ/m2 when temperature was lowered from 32 °C to 17 °C, weakening the adsorption capacity of cells to the surface, and making the biofilm detachment ratio increased to 50.8%. When further cooling the environmental temperature to 4 °C, the detachment capability of microalgae biofilm kept growing. 91.6% of the cells in the biofilm were harvesting from the 3D porous substrate. And the biofilm detached rate was up to 19.84 g/m2/h, realizing the temperature-controlled microalgae biofilm harvesting. But, microalgae growth results in the secretion of extracellular polymeric substances (EPS), which enhanced biofilm adhesion and made cell detachment more difficult. Thus, ultrasonic vibration was used to reinforce biofilm detachment. With the help of ultrasonic vibration, microalgae biofilm detached rate increased by 143.45% to 41.07 g/m2/h. These findings provide a solid foundation for further development of microalgae biofilm detachment and harvesting technology.


Asunto(s)
Biopelículas , Geles , Microalgas , Temperatura , Biopelículas/crecimiento & desarrollo , Microalgas/crecimiento & desarrollo , Porosidad , Geles/química , Acrilamidas/química
6.
Phytomedicine ; 130: 155748, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38788398

RESUMEN

BACKGROUND: Nardosinone, a major extract of Rhizoma nardostachyos, plays a vital role in sedation, neural stem cell proliferation, and protection of the heart muscle. However, the huge potential of nardosinone in regulating lipid metabolism and gut microbiota has not been reported, and its potential mechanism has not been studied. PURPOSE: To explore the regulation of nardosinone on liver lipid metabolism and gut microbiota. METHODS: In this study, the role of nardosinone in lipid metabolism was investigated in vitro and in vivo by adding it to mouse feed and HepG2 cell culture medium. And 16S rRNA gene sequencing was used to explore its regulatory effect on gut microbiota. RESULTS: Results showed that nardosinone could improve HFD-induced liver injury and abnormal lipid metabolism by promoting mitochondrial energy metabolism in hepatocytes, alleviating oxidative stress damage, and regulating the composition of the gut microbiota. Mechanistically, combined with network pharmacology and reverse docking analysis, it was predicted that CYP2D6 was the target of nardosinone, and the binding was verified by cellular thermal shift assay (CETSA). CONCLUSIONS: This study highlights a novel mechanism function of nardosinone in regulating lipid metabolism and gut microbiota. It also predicts and validates CYP2D6 as a previously unknown regulatory target, which provides new possibilities for the application of nardosinone and the treatment of metabolic-associated fatty liver disease.


Asunto(s)
Citocromo P-450 CYP2D6 , Metabolismo Energético , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Humanos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Células Hep G2 , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Metabolismo Energético/efectos de los fármacos , Citocromo P-450 CYP2D6/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Simulación del Acoplamiento Molecular , Hígado Graso/tratamiento farmacológico
7.
Cell Commun Signal ; 22(1): 300, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816763

RESUMEN

Optimizing the efficiency of definitive endoderm (DE) differentiation is necessary for the generation of diverse organ-like structures. In this study, we used the small molecule inhibitor saracatinib (SAR) to enhance DE differentiation of human embryonic stem cells and induced pluripotent stem cells. SAR significantly improved DE differentiation efficiency at low concentrations. The interaction between SAR and Focal Adhesion Kinase (FAK) was explored through RNA-seq and molecular docking simulations, which further supported the inhibition of DE differentiation by p-FAK overexpression in SAR-treated cells. In addition, we found that SAR inhibited the nuclear translocation of Yes-associated protein (YAP), a downstream effector of FAK, which promoted DE differentiation. Moreover, the addition of SAR enabled a significant reduction in activin A (AA) from 50 to 10 ng/mL without compromising DE differentiation efficiency. For induction of the pancreatic lineage, 10 ng/ml AA combined with SAR at the DE differentiation stage yielded a comparative number of PDX1+/NKX6.1+ pancreatic progenitor cells to those obtained by 50 ng/ml AA treatment. Our study highlights SAR as a potential modulator that facilitates the cost-effective generation of DE cells and provides insight into the orchestration of cell fate determination.


Asunto(s)
Benzodioxoles , Diferenciación Celular , Endodermo , Quinazolinas , Transducción de Señal , Humanos , Diferenciación Celular/efectos de los fármacos , Endodermo/efectos de los fármacos , Endodermo/citología , Endodermo/metabolismo , Benzodioxoles/farmacología , Transducción de Señal/efectos de los fármacos , Quinazolinas/farmacología , Factores de Transcripción/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Activinas/metabolismo , Simulación del Acoplamiento Molecular
8.
J Nanobiotechnology ; 22(1): 301, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816771

RESUMEN

Intervertebral disc degeneration (IVDD) is the primary factor contributing to low back pain (LBP). Unlike elderly patients, many young IVDD patients usually have a history of trauma or long-term abnormal stress, which may lead to local inflammatory reaction causing by immune cells, and ultimately accelerates degeneration. Research has shown the significance of M1-type macrophages in IVDD; nevertheless, the precise mechanism and the route by which it influences the function of nucleus pulposus cell (NPC) remain unknown. Utilizing a rat acupuncture IVDD model and an NPC degeneration model induced by lipopolysaccharide (LPS), we investigated the function of M1 macrophage-derived exosomes (M1-Exos) in IVDD both in vivo and in vitro in this study. We found that M1-Exos enhanced LPS-induced NPC senescence, increased the number of SA-ß-gal-positive cells, blocked the cell cycle, and promoted the activation of P21 and P53. M1-Exos derived from supernatant pretreated with the exosome inhibitor GW4869 reversed this result in vivo and in vitro. RNA-seq showed that Lipocalin2 (LCN2) was enriched in M1-Exos and targeted the NF-κB pathway. The quantity of SA-ß-gal-positive cells was significantly reduced with the inhibition of LCN2, and the expression of P21 and P53 in NPCs was decreased. The same results were obtained in the acupuncture-induced IVDD model. In addition, inhibition of LCN2 promotes the expression of type II collagen (Col-2) and inhibits the expression of matrix metalloproteinase 13 (MMP13), thereby restoring the equilibrium of metabolism inside the extracellular matrix (ECM) in vitro and in vivo. In addition, the NF-κB pathway is crucial for regulating M1-Exo-mediated NPC senescence. After the addition of M1-Exos to LPS-treated NPCs, p-p65 activity was significantly activated, while si-LCN2 treatment significantly inhibited p-p65 activity. Therefore, this paper demonstrates that M1 macrophage-derived exosomes have the ability to deliver LCN2, which activates the NF-κB signaling pathway, and exacerbates IVDD by accelerating NPC senescence. This may shed new light on the mechanism of IVDD and bring a fresh approach to IVDD therapy.


Asunto(s)
Senescencia Celular , Exosomas , Degeneración del Disco Intervertebral , Lipocalina 2 , Macrófagos , FN-kappa B , Núcleo Pulposo , Ratas Sprague-Dawley , Transducción de Señal , Animales , Exosomas/metabolismo , Núcleo Pulposo/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Lipocalina 2/metabolismo , Lipocalina 2/genética , Ratas , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Lipopolisacáridos/farmacología , Modelos Animales de Enfermedad
9.
Phys Chem Chem Phys ; 26(21): 15717-15732, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38767249

RESUMEN

This study examines how a deionized water droplet behaves when it centrally collides with a liquid film containing TiO2 nanoparticles at low impact velocities, aiming to understand how nanoparticles affect droplet spreading, in particular its maximum spreading diameter. Typically, we found that both the spreading velocity and dynamic contact angle of the droplet would be similarly affected by increasing TiO2 nanoparticle concentration. During retraction, the droplet's dimensionless spreading diameter oscillates, with more pronounced oscillations at higher nanoparticle concentrations. Moreover, both the droplet's maximum dimensionless rebound height and dynamic contact angle show similar trends with increasing TiO2 nanoparticle concentration. Interestingly, we proved that the influence of the solid-liquid interaction (Stokes force) on the fluid during the spreading process accounts for less than 2% of the surface energy when the droplet reaches its maximum spreading diameter, indicating a negligible effect on droplet spreading. We hypothesize that the droplet's initial energy is fully converted into surface energy and viscous dissipation at maximum spreading diameter, which involves viscous dissipation both between the fluid and the solid wall surface and the fluid and solid particle surface. Based on this, we developed a model for predicting the droplet's maximum spreading diameter that includes parameters associated with the solid particles. Compared to models in the literature that do not consider the effect of solid particles, our model aligns more closely with experimental data. The results indicate that adding solid particles leads to increased viscous dissipation, which in turn reduces the droplet's maximum spreading diameter.

10.
Exp Cell Res ; 439(1): 114089, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38740166

RESUMEN

Nucleus pulposus cells (NPCs) apoptosis and inflammation are the extremely critical factors of intervertebral disc degeneration (IVDD). Nevertheless, the underlying procedure remains mysterious. Macrophage migration inhibitory factor (MIF) is a cytokine that promotes inflammation and has been demonstrated to have a significant impact on apoptosis and inflammation. For this research, we employed a model of NPCs degeneration stimulated by lipopolysaccharides (LPS) and a rat acupuncture IVDD model to examine the role of MIF in vitro and in vivo, respectively. Initially, we verified that there was a significant rise of MIF expression in the NP tissues of individuals with IVDD, as well as in rat models of IVDD. Furthermore, this augmented expression of MIF was similarly evident in degenerated NPCs. Afterwards, it was discovered that ISO-1, a MIF inhibitor, effectively decreased the quantity of cells undergoing apoptosis and inhibited the release of inflammatory molecules (TNF-α, IL-1ß, IL-6). Furthermore, it has been shown that the PI3K/Akt pathway plays a vital part in the regulation of NPCs degeneration by MIF. Ultimately, we showcased that the IVDD process was impacted by the MIF inhibitor in the rat model. In summary, our experimental results substantiate the significant involvement of MIF in the degeneration of NPCs, and inhibiting MIF activity can effectively mitigate IVDD.


Asunto(s)
Apoptosis , Inflamación , Degeneración del Disco Intervertebral , Factores Inhibidores de la Migración de Macrófagos , Núcleo Pulposo , Ratas Sprague-Dawley , Animales , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Apoptosis/efectos de los fármacos , Inflamación/metabolismo , Inflamación/patología , Ratas , Masculino , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Femenino , Isoxazoles/farmacología , Adulto , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Fosfatidilinositol 3-Quinasas/metabolismo
11.
Discov Oncol ; 15(1): 191, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802621

RESUMEN

BACKGROUND: Interferon-induced transmembrane protein 2 (IFITM2) is involved in repressing viral infection. This study aim to investigate the expression of IFITM2 in colorectal cancer (CRC) and explore its effect on cell proliferation, migration, and invasion. METHODS: We analyzed The Cancer Genome Atlas (TCGA) database for IFITM2 expression in colorectal cancer and used western blots to detect IFITM2 protein in specimens and cell lines of colorectal cancers. To assess the association between IFITM2 and clinical features, both univariate and multivariate cox regression analysis were conducted. Kaplan-Meier plots were used in the TCGA database to assess IFITM2 gene expression's prognostic significance. Silencing IFITM2 in SW480 and HCT116 cells was achieved by transient transfection with siRNA. Proliferation of CRCs was examined using Cell Counting Kit-8. The effect of IFITM2 on the migration and invasion of CRC cells was studied using wound healing and transwell assays. Gene set enrichment analysis (GSEA) was used to examine IFITM2-associated pathways and Western blotting was used to confirm it. RESULTS: IFITM2 was over-expressed in the CRC tissues and cells, with high IFITM2 expression related to the tumor N, M, and pathologic stages. The presence of IFITM2 significantly impacted patient survival in CRC. The proliferation of SW480 and HCT116 cells was suppressed when IFITM2 was silenced, resulting in weakened migration and invasion of CRC cells. GSEA analysis showed that IFITM2 was positively related to the phosphoinositide 3-kinase (PI3K)/AKT pathway, and western blot results confirmed that IFITM2 activated it. CONCLUSIONS: IFITM2 was over-expressed in CRC and modulated the PI3K/AKT pathway to promote CRC cells proliferation and metastasis.

12.
Integr Med Res ; 13(2): 101039, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38746044

RESUMEN

Background: Chronic fatigue is a predominant symptom of post COVID-19 condition, or long COVID. We aimed to evaluate the efficacy and safety of Traditional, Complementary and Integrative Medicine (TCIM) for fatigue post COVID-19 infection. Methods: Ten English and Chinese language databases and grey literature were searched up to 12 April 2023 for randomized controlled trials (RCTs). Cochrane "Risk of bias" (RoB) tool was applied. Evidence certainty was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Effect estimates were presented as risk ratio (RR) or mean difference (MD) with 95% confidence interval (CI). Results: Thirteen RCTs with 1632 participants were included. One RCT showed that Bufei Huoxue herbal capsules reduced fatigue (n=129, MD -14.90, 95%CI -24.53 to -5.27), one RCT reported that Ludangshen herbal liquid lowered fatigue (n=184, MD -1.90, 95%CI -2.38 to -1.42), and the other one RCT shown that fatigue disappearance rate was higher with Ludangshen herbal liquid (n=184, RR 4.19, 95%CI 2.06 to 8.53). Compared to traditional Chinese medicine rehabilitation (TCM-rahab) alone, one RCT showed that fatigue symptoms were lower following Qingjin Yiqi granules plus TCM-rehab (n=388, MD -0.48, 95%CI -0.50 to -0.46). Due to concerns with RoB and/or imprecision, the certainty in this evidence was low to very low. No serious adverse events was reported. Conclusions: Limited evidence suggests that various TCIM interventions might reduce post COVID-19 fatigue. Larger, high quality RCTs of longer duration are required to confirm these preliminary findings. Study Registration: The protocol of this review has been registered at PROSPERO: CRD42022384136.

13.
Front Neurol ; 15: 1341252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685951

RESUMEN

Background: Postoperative pneumonia (POP) is one of the primary complications after aneurysmal subarachnoid hemorrhage (aSAH) and is associated with postoperative mortality, extended hospital stay, and increased medical fee. Early identification of pneumonia and more aggressive treatment can improve patient outcomes. We aimed to develop a model to predict POP in aSAH patients using machine learning (ML) methods. Methods: This internal cohort study included 706 patients with aSAH undergoing intracranial aneurysm embolization or aneurysm clipping. The cohort was randomly split into a train set (80%) and a testing set (20%). Perioperative information was collected from participants to establish 6 machine learning models for predicting POP after surgical treatment. The area under the receiver operating characteristic curve (AUC), precision-recall curve were used to assess the accuracy, discriminative power, and clinical validity of the predictions. The final model was validated using an external validation set of 97 samples from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Results: In this study, 15.01% of patients in the training set and 12.06% in the testing set with POP after underwent surgery. Multivariate logistic regression analysis showed that mechanical ventilation time (MVT), Glasgow Coma Scale (GCS), Smoking history, albumin level, neutrophil-to-albumin Ratio (NAR), c-reactive protein (CRP)-to-albumin ratio (CAR) were independent predictors of POP. The logistic regression (LR) model presented significantly better predictive performance (AUC: 0.91) than other models and also performed well in the external validation set (AUC: 0.89). Conclusion: A machine learning model for predicting POP in aSAH patients was successfully developed using a machine learning algorithm based on six perioperative variables, which could guide high-risk POP patients to take appropriate preventive measures.

14.
Rev Clin Esp (Barc) ; 224(6): 366-378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670226

RESUMEN

BACKGROUND: As individuals age, the prevalence of osteoarthritis tends to increase gradually. α-Klotho is a hormone renowned for its anti-aging properties. However, the precise role of serum α-Klotho in osteoarthritis is still not fully comprehended. METHODS: We conducted a cross-sectional study utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2007 to 2016. Serum α-Klotho levels were measured using an enzyme-linked immunosorbent assay (ELISA). Osteoarthritis was assessed through self-reported questionnaires. Through univariate and multivariate logistic regression analyses, smooth curve fitting, threshold effect analysis, and subgroup analyses, we delved into the potential association between them. RESULTS: The study encompassed a cohort of 10,265 participants. In fully adjusted models of multivariate logistic regression analysis, we identified a negative correlation between serum ln α-Klotho and OA (OR = 0.77, 95% CI: 0.65-0.91, p = 0.003). When stratifying serum α-Klotho levels into tertiles, individuals in the highest tertile exhibited a 26% reduced risk of OA compared to those in the lowest tertile (OR = 0.84, 95% CI: 0.73-0.97, p = 0.014). Subsequent analyses indicated a linearly negative association. In subgroup analyses, we explored the relationship between serum ln α-Klotho and osteoarthritis across diverse populations, revealing the persistence of this association in the majority of subgroups. CONCLUSION: Serum α-Klotho levels exhibit a significant negative linear correlation with the prevalence of osteoarthritis in middle-aged and elderly populations in the United States.


Asunto(s)
Proteínas Klotho , Encuestas Nutricionales , Osteoartritis , Humanos , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Osteoartritis/sangre , Osteoartritis/epidemiología , Prevalencia , Anciano , Glucuronidasa/sangre , Estados Unidos/epidemiología
15.
ACS Appl Mater Interfaces ; 16(15): 19411-19420, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588486

RESUMEN

Zinc oxide (ZnO) is a widely employed material for enhancing the performance of cellulose-based triboelectric nanogenerators (C-TENGs). Our study provides a novel chemical interpretation for the improved output efficiency of ZnO in C-TENGs. C-TENGs exhibit excellent flexibility and integration, achieving a maximum open-circuit voltage (Voc) of 210 V. The peak power density is 54.4 µW/cm2 with a load resistance of 107 Ω, enabling the direct powering of 191 light-emitting diodes with the generated electrical output. Moreover, when deployed as self-powered sensors, C-TENGs exhibit prolonged operational viability and responsiveness, adeptly discerning bending and motion induced by human interaction. The device's sensitivity, flexibility, and stability position it as a promising candidate for a diverse array of energy-harvesting applications and advanced healthcare endeavors. Specifically, envisaging sensitized wearable sensors for human activities underscores the multifaceted potential of C-TENGs in enhancing both energy-harvesting technologies and healthcare practices.


Asunto(s)
Óxido de Zinc , Humanos , Fenómenos Físicos , Movimiento (Física) , Celulosa , Actividades Humanas
16.
Langmuir ; 40(16): 8593-8607, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38604806

RESUMEN

Understanding the adsorption mechanism and precisely predicting the thermodynamic adsorption properties of methane at high pressure are crucial while very challenging for shale gas development. In this study, we demonstrated that the Langmuir adsorption model combining with different empirical methods to determine the adsorption phase density makes the calculated isothermal adsorption heat violate Henry's law at low pressure. For instance, the isothermal adsorption heat calculated by the Langmuir-Freundlich model contradicts Henry's law when the absolute adsorption quantity is zero. Given the current challenge in accurately calculating the adsorption phase density, it is necessary to impose constraints on the parameters of the adsorption model by adhering to Henry's law to maintain thermodynamic consistency. We found that the adsorption phase volume of methane molecules lies between the micropore volume and the total pore volume when shale adsorption reaches saturation. The adsorption mechanism involves not only filling micropores but also monolayer adsorption in meso-macro pores. The high-energy adsorption sites for methane are primarily concentrated in organic matter, while within these methane adsorption areas in shale, the high-energy adsorption sites for water are mainly located in kaolinite within clay minerals. The zero-pressure heat of adsorption is a temperature-independent thermodynamic index, yet it is influenced by the water content. It can therefore be selected as a quantitative measure to evaluate the impact of methane adsorption on water.

17.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G495-G503, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469630

RESUMEN

Tissue-specific gene manipulations are widely used in genetically engineered mouse models. A single recombinase system, such as the one using Alb-Cre, has been commonly used for liver-specific genetic manipulations. However, most diseases are complex, involving multiple genetic changes and various cell types. A dual recombinase system is required for conditionally modifying different genes sequentially in the same cell or inducing genetic changes in different cell types within the same organism. A FlpO cDNA was inserted between the last exon and 3'-UTR of the mouse albumin gene in a bacterial artificial chromosome (BAC-Alb-FlpO). The founders were crossed with various reporter mice to examine the efficiency of recombination. Liver cancer tumorigenesis was investigated by crossing the FlpO mice with FSF-KrasG12D mice and p53frt mice (KPF mice). BAC-Alb-FlpO mice exhibited highly efficient recombination capability in both hepatocytes and intrahepatic cholangiocytes. No recombination was observed in the duodenum and pancreatic cells. BAC-Alb-FlpO-mediated liver-specific expression of mutant KrasG12D and conditional deletion of p53 gene caused the development of liver cancer. Remarkably, liver cancer in these KPF mice manifested a distinctive mixed hepatocellular carcinoma and cholangiocarcinoma phenotype. A highly efficient and liver-specific BAC-Alb-FlpO mouse model was developed. In combination with other Cre lines, different genes can be manipulated sequentially in the same cell, or distinct genetic changes can be induced in different cell types of the same organism.NEW & NOTEWORTHY A liver-specific Alb-FlpO mouse line was generated. By coupling it with other existing CreERT or Cre lines, the dual recombinase approach can enable sequential gene modifications within the same cell or across various cell types in an organism for liver research through temporal and spatial gene manipulations.


Asunto(s)
Neoplasias Hepáticas , Proteínas Proto-Oncogénicas p21(ras) , Ratones , Animales , Ratones Transgénicos , Proteínas Proto-Oncogénicas p21(ras)/genética , Albúminas/genética , Recombinasas/genética , Recombinación Genética , Neoplasias Hepáticas/genética , Integrasas/genética
18.
Environ Sci Pollut Res Int ; 31(16): 24099-24112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436843

RESUMEN

Studies published recently proposed that ammonia-oxidizing archaea (AOA) may be beneficial for hypersaline (salinity > 50 g NaCl L-1) industrial wastewater treatment. However, knowledge of AOA activity in hypersaline bioreactors is limited. This study investigated the effects of salinity, organic matter, and practical pickled mustard tuber wastewater (PMTW) on AOA and ammonia-oxidizing bacteria (AOB) in two sequencing batch biofilm reactors (SBBRs). Results showed that despite observed salinity inhibition (p < 0.05), both AOA and AOB contributed to high ammonia removal efficiency at a salinity of 70 g NaCl L-1 in the two SBBRs. The ammonia removal efficiency of SBBR2 did not significantly differ from that of SBBR1 in the absence of organic matter (p > 0.05). Batch tests and quantitative real-time PCR (qPCR) reveal that salinity and organic matter inhibition resulted in a sharp decline in specific ammonia oxidation rates and amoA gene copy numbers of AOA and AOB (p < 0.05). AOA demonstrated higher abundance and more active ammonia oxidation activity in hypersaline and high organic matter environments. Salinity was positively correlated with the potential ammonia oxidation contribution of AOA (p < 0.05), resulting in a potential transition from AOB dominance to AOA dominance in SBBR1 as salinity levels rose. Moreover, autochthonous AOA in PMTW promoted the abundance and ammonia oxidation activities of AOA in SBBR2, further elevating the nitrification removal efficiency after feeding the practical PMTW. AOA demonstrates greater tolerance to the challenging hypersaline environment, making it a valuable candidate for the treatment of practical industrial wastewater with high salinity and organic content.


Asunto(s)
Archaea , Aguas Residuales , Archaea/genética , Amoníaco , Salinidad , Cloruro de Sodio , Oxidación-Reducción , Bacterias/genética , Nitrificación , Filogenia , Microbiología del Suelo
19.
J Hepatol ; 81(1): 120-134, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38428643

RESUMEN

BACKGROUND & AIMS: The PTEN-AKT pathway is frequently altered in extrahepatic cholangiocarcinoma (eCCA). We aimed to evaluate the role of PTEN in the pathogenesis of eCCA and identify novel therapeutic targets for this disease. METHODS: The Pten gene was genetically deleted using the Cre-loxp system in biliary epithelial cells. The pathologies were evaluated both macroscopically and histologically. The characteristics were further analyzed by immunohistochemistry, reverse-transcription PCR, cell culture, and RNA sequencing. Some features were compared to those in human eCCA samples. Further mechanistic studies utilized the conditional knockout of Trp53 and Aurora kinase A (Aurka) genes. We also tested the effectiveness of an Aurka inhibitor. RESULTS: We observed that genetic deletion of the Pten gene in the extrahepatic biliary epithelium and peri-ductal glands initiated sclerosing cholangitis-like lesions in mice, resulting in enlarged and distorted extrahepatic bile ducts in mice as early as 1 month after birth. Histologically, these lesions exhibited increased epithelial proliferation, inflammatory cell infiltration, and fibrosis. With aging, the lesions progressed from low-grade dysplasia to invasive carcinoma. Trp53 inactivation further accelerated disease progression, potentially by downregulating senescence. Further mechanistic studies showed that both human and mouse eCCA showed high expression of AURKA. Notably, the genetic deletion of Aurka completely eliminated Pten deficiency-induced extrahepatic bile duct lesions. Furthermore, pharmacological inhibition of Aurka alleviated disease progression. CONCLUSIONS: Pten deficiency in extrahepatic cholangiocytes and peribiliary glands led to a cholangitis-to-cholangiocarcinoma continuum that was dependent on Aurka. These findings offer new insights into preventive and therapeutic interventions for extrahepatic CCA. IMPACT AND IMPLICATIONS: The aberrant PTEN-PI3K-AKT signaling pathway is commonly observed in human extrahepatic cholangiocarcinoma (eCCA), a disease with a poor prognosis. In our study, we developed a mouse model mimicking cholangitis to eCCA progression by conditionally deleting the Pten gene via Pdx1-Cre in epithelial cells and peribiliary glands of the extrahepatic biliary duct. The conditional Pten deletion in these cells led to cholangitis, which gradually advanced to dysplasia, ultimately resulting in eCCA. The loss of Pten heightened Akt signaling, cell proliferation, inflammation, fibrosis, DNA damage, epigenetic signaling, epithelial-mesenchymal transition, cell dysplasia, and cellular senescence. Genetic deletion or pharmacological inhibition of Aurka successfully halted disease progression. This model will be valuable for testing novel therapies and unraveling the mechanisms of eCCA tumorigenesis.


Asunto(s)
Aurora Quinasa A , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Animales , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Colangiocarcinoma/etiología , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ratones , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/etiología , Neoplasias de los Conductos Biliares/metabolismo , Humanos , Ratones Noqueados , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Conductos Biliares Extrahepáticos/patología , Modelos Animales de Enfermedad , Colangitis/patología , Colangitis/etiología , Colangitis/metabolismo , Colangitis/genética , Transducción de Señal
20.
Int Immunopharmacol ; 131: 111904, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518595

RESUMEN

Intervertebral disc degeneration (IVDD) stands as the primary cause of low back pain (LBP). A significant contributor to IVDD is nucleus pulposus cell (NPC) senescence. However, the precise mechanisms underlying NPC senescence remain unclear. Monoacylglycerol lipase (MAGL) serves as the primary enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), breaking down monoglycerides into glycerol and fatty acids. It plays a crucial role in various pathological processes, including pain, inflammation, and oxidative stress. In this study, we utilized a lipopolysaccharide (LPS)-induced NPC senescence model and a rat acupuncture-induced IVDD model to investigate the role of MAGL in IVDD both in vitro and in vivo. Initially, our results showed that MAGL expression was increased 2.41-fold and 1.52-fold within NP tissues from IVDD patients and rats induced with acupuncture, respectively. This increase in MAGL expression was accompanied by elevated expression of p16INK4α. Following this, it was noted that the suppression of MAGL resulted in a notable decrease in the quantity of SA-ß-gal-positive cells and hindered the manifestation of p16INK4α and the inflammatory factor IL-1ß in NPCs. MAGL inhibition promotes type II collagen (Col-2) expression and inhibits matrix metalloproteinase 13 (MMP13), thereby restoring the balance of extracellular matrix (ECM) metabolism both in vitro and in vivo. A significant role for STING has also been demonstrated in the regulation of NPC senescence by MAGL. The expression of the STING protein was reduced by 57% upon the inhibition of MAGL. STING activation can replicate the effects of MAGL and substantially increase LPS-induced inflammation while accelerating the senescence of NPCs. These results strongly indicate that the inhibition of MAGL can significantly suppress nucleus pulposus senescence via its interaction with STING, consequently restoring the balance of ECM metabolism. This insight provides new perspectives for potential treatments for IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animales , Humanos , Ratas , Inflamación/metabolismo , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Lipopolisacáridos/farmacología , Monoacilglicerol Lipasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...