Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 357
1.
J Alzheimers Dis ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38759018

Background: Anxiety and social withdrawal are highly prevalent among patients with Alzheimer's disease (AD). However, the neural circuit mechanisms underlying these symptoms remain elusive, and there is a need for effective prevention strategies. Objective: This study aims to elucidate the neural circuitry mechanisms underlying social anxiety in AD. Methods: We utilized 5xFAD mice and conducted a series of experiments including optogenetic manipulation, Tandem Mass Tag-labeled proteome analysis, behavioral assessments, and immunofluorescence staining. Results: In 5xFAD mice, we observed significant amyloid-ß (Aß) accumulation in the anterior part of basolateral amygdala (aBLA). Behaviorally, 6-month-old 5xFAD mice displayed excessive social avoidance during social interaction. Concurrently, the pathway from aBLA to ventral hippocampal CA1 (vCA1) was significantly activated and exhibited a disorganized firing patterns during social interaction. By optogenetically inhibiting the aBLA-vCA1 pathway, we effectively improved the social ability of 5xFAD mice. In the presence of Aß accumulation, we identified distinct changes in the protein network within the aBLA. Following one month of administration of Urolithin A (UA), we observed significant restoration of the abnormal protein network within the aBLA. UA treatment also attenuated the disorganized firings of the aBLA-vCA1 pathway, leading to an improvement in social ability. Conclusions: The aBLA-vCA1 circuit is a vulnerable pathway in response to Aß accumulation during the progression of AD and plays a crucial role in Aß-induced social anxiety. Targeting the aBLA-vCA1 circuit and UA administration are both effective strategies for improving the Aß-impaired social ability.

2.
Signal Transduct Target Ther ; 9(1): 105, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38679634

Impaired brain glucose metabolism is an early indicator of Alzheimer's disease (AD); however, the fundamental mechanism is unknown. In this study, we found a substantial decline in isocitrate dehydrogenase 3ß (IDH3ß) levels, a critical tricarboxylic acid cycle enzyme, in AD patients and AD-transgenic mice's brains. Further investigations demonstrated that the knockdown of IDH3ß induced oxidation-phosphorylation uncoupling, leading to reduced energy metabolism and lactate accumulation. The resulting increased lactate, a source of lactyl, was found to promote histone lactylation, thereby enhancing the expression of paired-box gene 6 (PAX6). As an inhibitory transcription factor of IDH3ß, the elevated PAX6 in turn inhibited the expression of IDH3ß, leading to tau hyperphosphorylation, synapse impairment, and learning and memory deficits resembling those seen in AD. In AD-transgenic mice, upregulating IDH3ß and downregulating PAX6 were found to improve cognitive functioning and reverse AD-like pathologies. Collectively, our data suggest that impaired oxidative phosphorylation accelerates AD progression via a positive feedback inhibition loop of IDH3ß-lactate-PAX6-IDH3ß. Breaking this loop by upregulating IDH3ß or downregulating PAX6 attenuates AD neurodegeneration and cognitive impairments.


Alzheimer Disease , Isocitrate Dehydrogenase , Mice, Transgenic , Animals , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Mice , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism , Feedback, Physiological , Male , Female
3.
MedComm (2020) ; 5(4): e540, 2024 Apr.
Article En | MEDLINE | ID: mdl-38606360

Senile plaque, composed of amyloid ß protein (Aß) aggregates, is a critical pathological feature in Alzheimer's disease (AD), leading to cognitive dysfunction. However, how Aß aggregates exert age-dependent toxicity and temporal cognitive dysfunction in APP/PS1 mice remains incompletely understood. In this study, we investigated AD pathogenesis and dynamic alterations in lysosomal pathways within the hippocampus of age-gradient male mice using transcriptome sequencing, molecular biology assays, and histopathological analyses. We observed high levels of ß-amyloid precursor protein (APP) protein expression in the hippocampus at an early stage and age-dependent Aß deposition. Transcriptome sequencing revealed the enrichment of differential genes related to the lysosome pathway. Furthermore, the protein expression of ATP6V0d2 and CTSD associated with lysosomal functions exhibited dynamic changes with age, increasing in the early stage and decreasing later. Similar age-dependent patterns were observed for the endosome function, autophagy pathway, and SGK1/FOXO3a pathway. Nissl and Golgi staining in the hippocampal region showed age-dependent neuronal loss and synaptic damage, respectively. These findings clearly define the age-gradient changes in the autophagy-lysosome system, the endosome/lysosome system, and the SGK1/FOXO3a pathway in the hippocampus of APP/PS1 mice, providing new perspectives and clues for understanding the possible mechanisms of AD, especially the transition from compensatory to decompensated state.

4.
Phys Chem Chem Phys ; 26(15): 11667-11675, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38563364

The design of efficient, stable and cost-effective electrocatalysts for the hydrogen evolution reaction holds substantial significance in water electrolysis, but it remains challenging. Tremella-like nickel-molybdenum bimetal phosphide encapsulated cobalt phosphide (NiMoP/CoP) with hierarchical architectures has been effectively synthesized on nickel foam (NF) via a straightforward hydrothermal followed by low-temperature phosphating method. Based on the unique structural benefits, it significantly increases the number of redox active centers, enhances the electrical conductivity of materials, and diminishes the ion diffusion path lengths, thereby promoting efficient electrolyte penetration and reducing the inherent resistance. The as-obtained NiMoP/CoP/NF electrocatalyst exhibited remarkable catalytic activity with an ultralow overpotential of 38 mV (10 mA cm-2) and low Tafel slope of 83 mV dec-1. The straightforward synthesis process and exceptional electrocatalytic properties of NiMoP/CoP/NF demonstrate great potential for the HER to replace the precious metal catalyst.

5.
Mil Med Res ; 11(1): 16, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38462603

BACKGROUND: Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS: We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS: The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION: This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.


Alzheimer Disease , Humans , Male , Mice , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice, Transgenic , Proteomics , Hippocampus/metabolism , Hippocampus/pathology , Memory Disorders/metabolism
6.
Eur J Neurosci ; 59(10): 2732-2747, 2024 May.
Article En | MEDLINE | ID: mdl-38501537

Elevated serum homocysteine (Hcy) level is a risk factor for Alzheimer's disease (AD) and accelerates cell aging. However, the mechanism by which Hcy induces neuronal senescence remains largely unknown. In this study, we observed that Hcy significantly promoted senescence in neuroblastoma 2a (N2a) cells with elevated ß-catenin and Kelch-like ECH-associated protein 1 (KEAP1) levels. Intriguingly, Hcy promoted the interaction between KEAP1 and the Wilms tumor gene on the X chromosome (WTX) while hampering the ß-catenin-WTX interaction. Mechanistically, Hcy attenuated the methylation level of the KEAP1 promoter CpG island and activated KEAP1 transcription. However, a slow degradation rate rather than transcriptional activation contributed to the high level of ß-catenin. Hcy-upregulated KEAP1 competed with ß-catenin to bind to WTX. Knockdown of both ß-catenin and KEAP1 attenuated Hcy-induced senescence in N2a cells. Our data highlight a crucial role of the KEAP1-ß-catenin pathway in Hcy-induced neuronal-like senescence and uncover a promising target for AD treatment.


Cellular Senescence , Homocysteine , Kelch-Like ECH-Associated Protein 1 , Neuroblastoma , Ubiquitination , beta Catenin , beta Catenin/metabolism , Cellular Senescence/drug effects , Cellular Senescence/physiology , Animals , Homocysteine/pharmacology , Homocysteine/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , Cell Line, Tumor , Ubiquitination/drug effects , Neuroblastoma/metabolism , Humans , Neurons/metabolism , Neurons/drug effects
7.
Clin Transl Med ; 14(3): e1623, 2024 03.
Article En | MEDLINE | ID: mdl-38488468

BACKGROUND: Alzheimer's disease (AD) and related Tauopathies are characterised by the pathologically hyperphosphorylated and aggregated microtubule-associated protein Tau, which is accompanied by neuroinflammation mediated by activated microglia. However, the role of Tau pathology in microglia activation or their causal relationship remains largely elusive. METHODS: The levels of nucleotide-binding oligomerisation domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) acetylation and inflammasome activation in multiple cell models with Tau proteins treatment, transgenic mice with Tauopathy, and AD patients were measured by Western blotting and enzyme-linked immunosorbent assay. In addition, the acetyltransferase activity of Tau and NLRP3 acetylation sites were confirmed using the test-tube acetylation assay, co-immunoprecipitation, immunofluorescence (IF) staining, mass spectrometry and molecular docking. The Tau-overexpressing mouse model was established by overexpression of human Tau proteins in mouse hippocampal CA1 neurons through the adeno-associated virus injection. The cognitive functions of Tau-overexpressing mice were assessed in various behavioural tests, and microglia activation was analysed by Iba-1 IF staining and [18F]-DPA-714 positron emission tomography/computed tomography imaging. A peptide that blocks the interaction between Tau and NLRP3 was synthesised to determine the in vitro and in vivo effects of Tau-NLRP3 interaction blockade on NLRP3 acetylation, inflammasome activation, microglia activation and cognitive function. RESULTS: Excessively elevated NLRP3 acetylation and inflammasome activation were observed in 3xTg-AD mice, microtubule-associated protein Tau P301S (PS19) mice and AD patients. It was further confirmed that mimics of 'early' phosphorylated-Tau proteins which increase at the initial stage of diseases with Tauopathy, including TauT181E, TauS199E, TauT217E and TauS262E, significantly promoted Tau-K18 domain acetyltransferase activity-dependent NLRP3 acetylation and inflammasome activation in HEK293T and BV-2 microglial cells. In addition, Tau protein could directly acetylate NLRP3 at the K21, K22 and K24 sites at its PYD domain and thereby induce inflammasome activation in vitro. Overexpression of human Tau proteins in mouse hippocampal CA1 neurons resulted in impaired cognitive function, Tau transmission to microglia and microgliosis with NLRP3 acetylation and inflammasome activation. As a targeted intervention, competitive binding of a designed Tau-NLRP3-binding blocking (TNB) peptide to block the interaction of Tau protein with NLRP3 inhibited the NLRP3 acetylation and downstream inflammasome activation in microglia, thereby alleviating microglia activation and cognitive impairment in mice. CONCLUSIONS: In conclusion, our findings provide evidence for a novel role of Tau in the regulation of microglia activation through acetylating NLRP3, which has potential implications for early intervention and personalised treatment of AD and related Tauopathies.


Alzheimer Disease , Inflammasomes , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , tau Proteins/genetics , tau Proteins/metabolism , HEK293 Cells , Molecular Docking Simulation , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Mice, Transgenic , Acetyltransferases
8.
J Colloid Interface Sci ; 662: 903-913, 2024 May 15.
Article En | MEDLINE | ID: mdl-38382374

Covalent organic frameworks (COFs) with controlled porosity, high crystallinity, diverse designability and excellent stability are very attractive in metal-free heterogeneous photocatalysis of volatile organic compounds (VOCs) degradation. In order to construct the high optimal performance COFs under feasible and universal conditions, herein, the visible light-driven hollow COFTAPB-PDA (H-COFTAPB-PDA) microcapsule was designed by a facile dual-ligand regulated sacrificial template method. The H-COFTAPB-PDA microcapsule possesses improved surface area, high crystallinity, broad absorption range and high stability, which enables enhanced substrates and visible light adsorption, photogenerated electrons-holes separation and transfer, and facilitate the generation of reactive radicals. Importantly, it was found to be a highly efficient photocatalyst for toluene degradation under visible-light irradiation compared with the solid COFTAPB-PDA, and the degradation efficiency of toluene reached 91.8 % within 180 min with the conversion rate of CO2 was 68.9 %. Additionally, the H-COFTAPB-PDA presented good recyclability and long-term stability after multiple photocatalytic reuses. Furthermore, the active sites of H-COFTAPB-PDA in photocatalytic degradation of toluene was proposed by XPS and DFT calculations, and the degradation pathway and mechanism was proposed and analyzed. The result presented great prospect of morphologic design of hollow COFs in metal-free heterogeneous photocatalysis for VOCs degradation.

9.
Cell Biosci ; 14(1): 22, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38347638

Protein post-translational modifications (PPTMs) refer to a series of chemical modifications that occur after the synthesis of protein. Proteins undergo different modifications such as phosphorylation, acetylation, ubiquitination, and so on. These modifications can alter the protein's structure, function, and interaction, thereby regulating its biological activity. In neurodegenerative diseases, several proteins undergo abnormal post-translational modifications, which leads to aggregation and abnormal deposition of protein, thus resulting in neuronal death and related diseases. For example, the main pathological features of Alzheimer's disease are the aggregation of beta-amyloid protein and abnormal phosphorylation of tau protein. The abnormal ubiquitination and loss of α-synuclein are related to the onset of Parkinson's disease. Other neurodegenerative diseases such as Huntington's disease, amyotrophic lateral sclerosis, and so on are also connected with abnormal PPTMs. Therefore, studying the abnormal PPTMs in neurodegenerative diseases is critical for understanding the mechanism of these diseases and the development of significant therapeutic strategies. This work reviews the implications of PPTMs in neurodegenerative diseases and discusses the relevant therapeutic strategies.

10.
Sci Bull (Beijing) ; 69(8): 1137-1152, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38341350

Abnormal hyperphosphorylation and accumulation of tau protein play a pivotal role in neurodegeneration in Alzheimer's disease (AD) and many other tauopathies. Selective elimination of hyperphosphorylated tau is promising for the therapy of these diseases. We have conceptualized a strategy, named dephosphorylation-targeting chimeras (DEPTACs), for specifically hijacking phosphatases to tau to debilitate its hyperphosphorylation. Here, we conducted the step-by-step optimization of each constituent motif to generate DEPTACs with reasonable effectiveness in facilitating the dephosphorylation and subsequent clearance of pathological tau. Specifically, for one of the selected chimeras, D16, we demonstrated its significant efficiency in rescuing the neurodegeneration caused by neurotoxic K18-tau seeds in vitro. Moreover, intravenous administration of D16 also alleviated tau pathologies in the brain and improved memory deficits in AD mice. These results suggested DEPTACs as targeted modulators of tau phosphorylation, which hold therapeutic potential for AD and other tauopathies.


Alzheimer Disease , Tauopathies , Mice , Animals , Alzheimer Disease/drug therapy , tau Proteins/genetics , Tauopathies/drug therapy , Phosphorylation , Brain/metabolism
12.
J Diabetes ; 16(1): e13470, 2024 Jan.
Article En | MEDLINE | ID: mdl-37700547

AIM: Both the activation of glycogen synthase kinase-3ß (GSK-3ß) and the presence of ApoE ε4 genotype have been found to respectively correlate with cognitive decline in patients with type 2 diabetes mellitus (T2DM), who further show a high incidence of developing Alzheimer's disease. However, the relationship between ApoE ε4 and GSK-3ß in the cognitive impairment of T2DM patients remains unclear. METHODS: ApoE genotypes and platelet GSK-3ß level were measured in 1139 T2DM patients recruited from five medical centers in Wuhan, China. Cognitive functions were assessed by Mini-Mental State Examination (MMSE). The association and the relationships among apolipoprotein E (ApoE) genotypes, GSK-3ß activity and cognitive function were analyzed by regression and mediating effect analyses, respectively. RESULTS: T2DM patients with ApoE ε4 but not ApoE ε2 haplotype showed poorer cognitive function and elevated platelet GSK-3ß activity, when using ApoE ε3 as reference. The elevation of GSK-3ß activity was positively correlated the diabetes duration, as well as plasma glycated hemoglobin (HbA1c) and glucose levels. Moreover, correlation and regression analysis also revealed significant pairwise correlations among GSK-3ß activity, ApoE gene polymorphism and cognitive function. Lastly, using Baron and Kenny modeling, we unveiled a mediative role of GSK-3ß activity between ApoE ε4 and cognitive impairment. CONCLUSION: We reported here that the upregulation of GSK-3ß activity mediates the exacerbation of cognitive impairment by ApoE ε4-enhanced cognitive impairment in T2DM patients, suggesting GSK-3ß inhibitors as promising drugs for preserving cognitive function in T2DM patients, especially to those with ApoE ε4 genotype.


Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Humans , Alleles , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Cognitive Dysfunction/genetics , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Genotype , Glycogen Synthase Kinase 3 beta/genetics
13.
Exp Neurol ; 373: 114657, 2024 Mar.
Article En | MEDLINE | ID: mdl-38141802

Neuronal neurofibrillary tangles containing Tau hyperphosphorylation proteins are a typical pathological marker of Alzheimer's disease (AD). The level of tangles in neurons correlates positively with severe dementia. However, how Tau induces cognitive dysfunction is still unknown, which leads to a lack of effective treatments for AD. Metal ions deposition occurs with tangles in AD brain autopsy. Reduced metal ion can improve the pathology of AD. To explore whether abnormally phosphorylated Tau causes metal ion deposition, we overexpressed human full-length Tau (hTau) in the hippocampal CA3 area of mice and primary cultured hippocampal neurons (CPHN) and found that Tau accumulation induced iron deposition and activated calcineurin (CaN), which dephosphorylates glycogen synthase kinase 3 beta (GSK3ß), mediating Tau hyperphosphorylation. Simultaneous activation of CaN dephosphorylates cyclic-AMP response binding protein (CREB), leading to synaptic deficits and memory impairment, as shown in our previous study; this seems to be a vicious cycle exacerbating tauopathy. In the current study, we developed a new metal ion chelator that displayed a significant inhibitory effect on Tau phosphorylation and memory impairment by chelating iron ions in vivo and in vitro. These findings provide new insight into the mechanism of memory impairment induced by Tau accumulation and develop a novel potential treatment for tauopathy in AD.


Alzheimer Disease , Tauopathies , Humans , Animals , Mice , Mice, Transgenic , Alzheimer Disease/metabolism , tau Proteins/metabolism , Tauopathies/pathology , Memory Disorders/drug therapy , Memory Disorders/etiology , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Ions , Iron , Phosphorylation , Glycogen Synthase Kinase 3 beta/metabolism
14.
Aging (Albany NY) ; 15(23): 14172-14191, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38095632

The main pathological changes of Alzheimer's disease (AD), a progressive neurodegenerative disorder, include senile plaque (deposited by amyloid beta), neurofibrillary tangle (formed by paired helical filaments composed of hyperphosphorylated tau), and massive loss of neurons. Currently there is a lack of ideal drugs to halt AD progression. Gypenosides (GPs), a kind of natural product, possesses potential therapeutic effects for neurodegenerative diseases, including AD. However, the specific role and mechanism of GPs for AD remain unclear. In the current study, we used staurosporine (STP), an inducer of apoptosis and causing tau hyperphosphorylation, to mimic AD models, and explored the role and mechanism of Gypenoside IX (one of the extracts of Gynostemma, GP for short name in our experiments) in STP treated primary hippocampal neurons and rats. We found STP not only increased apoptosis and tau hyperphosphorylation, but also significantly increased Aß production, resulting in synaptic dysfunction and cognitive decline in mimic AD models by STP. GP was found to rescue apoptosis and cognitive impairments caused by STP treatment. Moreover, GP recovered the decreased synaptic proteins PSD95, Synaptophysin and GluR2, and blocked dendritic spine loss. Interestingly, GP decreased the STP induced tau hyperphosphorylation at different sites including S-199, S-202, T-205, T-231, S-262, S-396, and S-404, and at the same time decreased Aß production through down-regulation of BACE1 and PS1. These effects in STP treated primary hippocampal neurons and rats were accompanied with a restoration of AKT/GSK-3ß signaling axis with GP treatment, supporting that dysregulation of AKT/GSK-3ß pathway might be involved in STP related AD pathogenesis. The results from our research proved that GP might be a potential candidate compound to reduce neuronal damage and prevent the cognitive decline in AD.


Alzheimer Disease , Cognitive Dysfunction , Rats , Animals , Alzheimer Disease/pathology , Glycogen Synthase Kinase 3 beta/metabolism , Amyloid beta-Peptides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Amyloid Precursor Protein Secretases/metabolism , tau Proteins/metabolism , Phosphorylation , Aspartic Acid Endopeptidases/metabolism , Cognitive Dysfunction/drug therapy , Cognition
15.
J Biol Chem ; 299(12): 105462, 2023 Dec.
Article En | MEDLINE | ID: mdl-37977223

The accumulation of abnormal Tau protein is a common feature of various neurodegenerative diseases. Truncated Tau, resulting from cleavage by asparaginyl endopeptidase (AEP, δ-secretase), promotes its own phosphorylation and aggregation. Our study focused on understanding the regulatory mechanisms of AEP activation and its interaction with other proteins. We discovered that c-Src plays a critical role in mediating the activation and polyubiquitination of AEP in response to epidermal growth factor stimulation. In addition, we investigated the involvement of tumor necrosis factor receptor-associated factor 6 (Traf6), an E3 ligase, in the regulation of AEP levels and its interaction with c-Src. Knockdown of Traf6 effectively inhibited c-Src-induced AEP activation. To gain further insights into the molecular mechanisms, we employed mass spectrometry to identify the specific tyrosine residues of Traf6 that are phosphorylated by c-Src. By mutating these phosphorylation sites to phenylalanine, we disrupted Traf6-mediated polyubiquitination and subsequently observed the inactivation of AEP. This finding suggests that the phosphorylation of Traf6 by c-Src is crucial for AEP activation. Pharmacological inhibition of c-Src reduced the phosphorylation of Traf6 and inhibited AEP activation in neurons derived from human-induced pluripotent stem cells. Conditional knockout of Traf6 in neurons prevented c-Src-induced AEP activation and subsequent Tau truncation in vivo. Moreover, phosphorylation of Traf6 is highly correlated with AEP activation, Tau368 and pathological Tau (AT8) in Alzheimer's disease brain. Overall, our study elucidates the role of c-Src in regulating AEP-cleaved Tau through phosphorylating Traf6. Targeting the c-Src-Traf6 pathway may hold potential for the treatment of Alzheimer's disease and other tauopathies.


Cysteine Endopeptidases , TNF Receptor-Associated Factor 6 , Ubiquitin-Protein Ligases , src-Family Kinases , tau Proteins , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cysteine Endopeptidases/metabolism , Phosphorylation , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism , tau Proteins/metabolism , TNF Receptor-Associated Factor 6/chemistry , TNF Receptor-Associated Factor 6/metabolism , Ubiquitin-Protein Ligases/metabolism , Enzyme Activation , Phenylalanine , Ubiquitination
16.
Transl Neurodegener ; 12(1): 51, 2023 11 10.
Article En | MEDLINE | ID: mdl-37950283

BACKGROUND: Intraneuronal accumulation of hyperphosphorylated tau is a defining hallmark of Alzheimer's disease (AD). However, mouse models imitating AD-exclusive neuronal tau pathologies are lacking. METHODS: We generated a new tet-on transgenic mouse model expressing truncated human tau N1-368 (termed hTau368), a tau fragment increased in the brains of AD patients and aged mouse brains. Doxycycline (dox) was administered in drinking water to induce hTau368 expression. Immunostaining and Western blotting were performed to measure the tau level. RNA sequencing was performed to evaluate gene expression, and several behavioral tests were conducted to evaluate mouse cognitive functions, emotion and locomotion. RESULTS: Dox treatment for 1-2 months at a young age induced overt and reversible human tau accumulation in the brains of hTau368 transgenic mice, predominantly in the hippocampus. Meanwhile, the transgenic mice exhibited AD-like high level of tau phosphorylation, glial activation, loss of mature neurons, impaired hippocampal neurogenesis, synaptic degeneration and cognitive deficits. CONCLUSIONS: This study developed a well-characterized and easy-to-use tool for the investigations and drug development for AD and other tauopathies.


Alzheimer Disease , Tauopathies , Animals , Humans , Mice , Alzheimer Disease/metabolism , Hippocampus/metabolism , Mice, Transgenic , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology
17.
Gen Psychiatr ; 36(5): e101057, 2023.
Article En | MEDLINE | ID: mdl-37936947

Background: Methamphetamine (METH) addiction causes a huge burden on society. The prefrontal cortex (PFC), associated with emotion and cognitive behaviours, is also involved in addiction neurocircuitry. Although bulk RNA sequencing has shown METH-induced gene alterations in the mouse PFC, the impact on different cell types remains unknown. Aims: To clarify the effects of METH treatment on different cell types of the PFC and the potential pathways involved in METH-related disorders. Methods: We performed single-nucleus RNA sequencing (snRNA-seq) to examine the transcriptomes of 20 465 nuclei isolated from the PFC of chronic METH-treated and control mice. Main cell types and differentially expressed genes (DEGs) were identified and confirmed by RNA fluorescence in situ hybridization(FISH). Results: Six main cell types were identified depending on the single-cell nucleus sequencing; of particular interest were the mature oligodendrocytes in the PFC. The DEGs of mature oligodendrocytes were enriched in the myelin sheath, adenosine triphosphate (ATP) metabolic process, mitochondrial function and components, and so on. The messenger RNA levels of Aldoc and Atp5l (FISH) and the protein level of the mitochondrial membrane pore subunit TOM40 (immunofluorescence) decreased in the mature oligodendrocytes. Fast blue staining and transmission electron microscopy image indicated myelin damage, and the myelin thickness decreased in METH brains. Conclusions: snRNA-seq reveals altered transcriptomes of different cell types in mouse PFC induced by chronic METH treatment, underscoring potential relationships with psychiatric disorders.

18.
Environ Sci Pollut Res Int ; 30(52): 113088-113104, 2023 Nov.
Article En | MEDLINE | ID: mdl-37848797

Reducing the environmental problems caused by nitrogen loss and nitrogen pollution is of great significance. The addition of biochar to soil is a new method for increasing nitrogen interception due to the special structural and physicochemical properties of biochar. The optimal modified biochar was screened out after acid-base modification and batch adsorption test in this paper. And then the effects of different soil and biochar mixing methods on soil physicochemical properties and nitrogen adsorption and retention were explored through soil column leaching test. The results showed that the biochar with a pyrolysis temperature of 700 °C had the best adsorption effect on nitrogen after being modified by 0.1 mol/L HCI, and the adsorption capacity of nitrate nitrogen reached 121.46 mg/g. The adsorption process of ammonia nitrogen and nitrate nitrogen conformed to the Langmuir model and was mainly homogeneous monolayer. After mixing the selected modified biochar with black soil, the pH increased by 4.77%, the content of ammonia nitrogen increased by 4.89%, and the nitrate content increased by 16.62%. In this study, the adsorption effect of biochar on nitrogen in black soil was discussed, so as to explore the optimal use of biochar in soil, which provided some reference basis for the relevant research.


Nitrates , Soil , Soil/chemistry , Ammonia , Charcoal/chemistry , Nitrogen/analysis , Adsorption
19.
Phys Chem Chem Phys ; 25(38): 26298-26307, 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37747098

The preparation of an electrocatalyst for the oxygen evolution reaction (OER) with high catalytic activity, good long-term durability and rapid reaction kinetics through interface engineering is of great significance. Herein, we have developed a bimetallic sulfide particle cluster-supported three-dimensional graphene aerogel (FeNiS@GA), which serves as an efficient electrocatalyst for OER, by a one-step hydrothermal method. Profiting from the synergy of the FeNiS particle cluster with high capacitance and GA with its three-dimensional porous nanostructure, FeNiS@GA shows a high specific surface area, large pore volume, low contact resistance, and decreases the electron and ion transport routes. FeNiS@GA exhibits outstanding OER activity (when the current density is 50 mA cm-2, the overpotential is 341 mV), low Tafel slope (63.87 mV dec-1) and remarkable stability in alkaline solutions, outperforming FeNiS, NiS@GA, FeS@GA and RuO2. Due to its simple synthesis process and excellent electrocatalytic performance, FeNiS@GA shows great potential to replace noble metal-based catalysts in practical applications.

20.
Phys Chem Chem Phys ; 25(34): 23277-23285, 2023 Aug 30.
Article En | MEDLINE | ID: mdl-37608788

Efficient non-noble metal bifunctional electrocatalysts can increase the conversion rate of electric energy in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, a ball & sheet MoS2/Ni3S2 composite with wide-layer-spacing and high 1T-rich MoS2 is assembled on nickel foam (NF) via a two-step solvothermal method with polymeric sulfur (S-r-DIB) as the sulfur source. The obtained material serves as both the cathode and the anode toward overall water splitting in an alkaline electrolyte. The results proved that the interpenetration of MoS2/Ni3S2-p with a ball and sheet structure increased the material active surface area and exposed more catalytic active sites, which contributed to the penetration of solution and the transfer of charge/hydrion. Meanwhile, two different semiconductors of MoS2 and Ni3S2 along with the presence of ample active sulfur edge sites and few-layer, wide-layer-spacing structures of MoS2 lead to an outstanding electrocatalytic activity. In particular, the electrodes of MoS2/Ni3S2-p only need a battery voltage of 1.55 V at 10 mA cm-2. The bifunctional electrocatalyst MoS2/Ni3S2-p also shows excellent stability at large current densities during the electrochemical test.

...