Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.222
Filtrar
1.
J Environ Sci (China) ; 149: 419-430, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181654

RESUMEN

A novel system for measuring net photochemical ozone production rates in the atmosphere based on cavity ring-down spectroscopy (OPR-CRDS) was developed. The system consists of two chambers (a reaction chamber and a reference chamber) and a dual-channel Ox-CRDS detector. To minimize the wall loss of Ox in the chambers, the inner surfaces of both chambers are coated with Teflon film. The performance of the OPR-CRDS system was characterized. It was found that even though the photolysis frequency (J value) decreased by 10%, the decrease in the P(O3) caused by the ultraviolet-blocking film coating was less than 3%. The two chambers had a good consistency in the mean residence time and the measurement of NO2 and Ox under the condition of no sunlight. The detection limit of the OPR-CRDS was determined to be 0.20 ppbv/hr. To further verify the accuracy of the system, the direct measurement values of the OPR-CRDS system were compared with the calculation results based on radical (OH, HO2, and RO2) reactions, and a good correlation was obtained between the measured and calculated values. Finally, the developed instrument was applied to obtain the comprehensive field observations at an urban site in the Yangtze River Delta (China) for 40 days, the time series and change characteristics of the P(O3) were obtained directly, and the good environmental adaptability and stability of the OPR-CRDS system were demonstrated. It is expected that the new instrument will be beneficial to investigations of the relationship between P(O3) and its precursors.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Ozono , Ozono/análisis , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación , Contaminantes Atmosféricos/análisis , Análisis Espectral/métodos , China , Atmósfera/química , Fotólisis
2.
J Hazard Mater ; 480: 135865, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39298969

RESUMEN

As one of the reclamation methods of sewage sludge, land application is commonly used. Because almost all organic waste is supposed to be recycled in land use, higher application ratio is necessary. This study conducted sludge land use experiments under high application ratio, and the migration of heavy metals in soil-plant system were studied. The mixture ratio of sludge to soil was 0:1, 0.00862:1, 0.2:1 (240 DS t/hm2), and 0.75:1 (900 DS t/hm2), which is higher than ISO 19698: 2020 and all the Chinese standards. The results showed that the high ratio of sludge application increased the concentration of heavy metals in soil, but after planting plants, the concentration of heavy metals decreased. And compared to sunflower and black-eyed Susan, ryegrass had the best bioaccumulation and transport capacity for heavy metals. As for the residual heavy metals in the soil, compared to the application ratio of 0.00862:1, increasing the application ratio to 0.2:1 did not significantly increase the risk of heavy metals. And if sludge was applied continuously for 15 years, only Hg may have a cumulative risk at the ratio of 0.2:1, but did not exceed GB 36600-2018. Controlling the maximum application rate at 0.2 and planting ryegrass can be a feasible strategy.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39297991

RESUMEN

PURPOSE: As a cause of primary female infertility, oocyte maturation arrest (OMA) is characterized by failure to obtain mature oocytes due to abnormal meiosis. We aimed to identify pathogenic variants in two sisters with OMA phenotype from a non-consanguineous family. METHODS: Whole-exome sequencing and Sanger sequencing were conducted to identify and validate the disease-causing gene variant. Additionally, we performed a minigene assay, quantitative reverse transcription PCR, and Western blotting to assess the effects of the variant. RESULTS: We identified a novel homozygous splicing variant (c.1021-11T>C) in TRIP13, which followed a recessive inheritance pattern. Minigene assay showed that the variant could disrupt the integrity of TRIP13 mRNA, as evidenced by the production of an alternative transcript with intron10 intermediate retention of 79 bp. Compared to normal controls, the expression of TRIP13 mRNA and abundance of TRIP13 protein were also significantly decreased in Epstein-Barr virus-immortalized lymphoblastoid cells derived from affected individuals. CONCLUSION: Our findings confirm the contribution of genetic factors to OMA and expand the mutation spectrum of TRIP13 in female infertility.

4.
Food Chem X ; 24: 101802, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39310890

RESUMEN

The flavor profiles of cherries cultivated in greenhouse and those grown in open fields show significant variations, however, the underlying flavor-contributing factors remain unidentified. Hence, a joint investigation with widely targeted metabolomics analysis, volatile fingerprint analysis, and descriptive sensory analysis for the Russia 8 and Tieton cherry cultivars was conducted using UPLC-MS/MS and GC × GC-TOFMS to clarify the flavor differences of open-air and greenhouse-grown cherries. The study found that open-air cultivation could lead to the accumulation of non-volatile flavor substances and prompted appearance of higher acidity, astringency, plum-like flavor, and fresh herb notes; most of differential metabolites were significantly positively correlated with astringency, plum-like flavor and bitterness. Through correlation analysis and path analysis, potential flavor components and key important pathways contributing to flavor disparities were provided, and light intensity, soil moisture content, temperature and humidity were inferred as the main factors affecting the flavor profiles of open-air and greenhouse-grown cherries.

5.
Brain Behav ; 14(9): e3648, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39262161

RESUMEN

BACKGROUND: The blood-cerebrospinal fluid barrier (BCSFB) comprises the choroid plexus epithelia. It is important for brain development, maintenance, function, and especially for maintaining immune homeostasis in the cerebrospinal fluid (CSF). Although previous studies have shown that the peripheral immune function of the body is impaired upon exposure to microgravity, no studies have reported changes in immune cells and cytokines in the CSF that reflect neuroimmune status. The purpose of this study is to investigate the alterations in cerebrospinal fluid (CSF) immune homeostasis induced by microgravity and its mechanisms. This research is expected to provide basic data for brain protection of astronauts during spaceflight. METHODS: The proportions of immune cells in the CSF and peripheral blood (PB) of SMG rats were analyzed using flow cytometry. Immune function was evaluated by measuring cytokine concentrations using the Luminex method. The histomorphology and ultrastructure of the choroid plexus epithelia were determined. The concentrations of intercellular junction proteins in choroid plexus epithelial cells, including vascular endothelial-cadherin (VE-cadherin), zonula occludens 1 (ZO-1), Claudin-1 and occludin, were detected using western blotting and immunofluorescence staining to characterize BCSFB injury. RESULTS: We found that SMG caused significant changes in the proportion of CD4 and CD8 T cells in the CSF and a significant increase in the levels of cytokines (GRO/KC, IL-18, MCP-1, and RANTES). In the PB, there was a significant decrease in the proportion of T cells and NKT cells and a significant increase in cytokine levels (GRO/KC, IL-18, MCP-1, and TNF-α). Additionally, we observed that the trends in immune markers in the PB and CSF were synchronized within specific SMG durations, suggesting that longer SMG periods (≥21 days) have a more pronounced impact on immune markers. Furthermore, 21d-SMG resulted in ultrastructural disruption and downregulated expression of intercellular junction proteins in rat choroid plexus epithelial cells. CONCLUSIONS: We found that SMG disrupts the BCSFB and affects the CSF immune homeostasis. This study provides new insights into the health protection of astronauts during spaceflight.


Asunto(s)
Barrera Hematoencefálica , Plexo Coroideo , Citocinas , Homeostasis , Simulación de Ingravidez , Animales , Homeostasis/fisiología , Ratas , Plexo Coroideo/inmunología , Plexo Coroideo/metabolismo , Masculino , Citocinas/metabolismo , Citocinas/líquido cefalorraquídeo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/inmunología , Líquido Cefalorraquídeo/inmunología , Líquido Cefalorraquídeo/metabolismo , Ratas Sprague-Dawley , Células Epiteliales/metabolismo , Células Epiteliales/inmunología
6.
Cancer Res ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250301

RESUMEN

Tumor stroma plays a critical role in fostering tumor progression and metastasis. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma. Identifying the key molecular determinants for the pro-tumor properties of CAFs could enable the development of more effective treatment strategies. Herein, through analyses of single-cell sequencing data, we identified a population of CAFs expressing high levels of sulfatase 1 (SULF1), which was associated with poor prognosis in colorectal cancer (CRC) patients. CRC models using mice with conditional SULF1 knockout in fibroblasts revealed the tumor-supportive function of SULF1+ CAFs. Mechanistically, SULF1+ CAFs enhanced the release of vascular endothelial growth factor A (VEGFA) from heparan sulfate proteoglycan (HSPG). The increased bioavailability of VEGFA initiated the deposition of extracellular matrix (ECM) and enhanced angiogenesis. In addition, intestinal microbiota-produced butyrate suppressed SULF1 expression in CAFs through its HDAC inhibitory activity. The insufficient butyrate production in CRC patients increased the abundance of SULF1+ CAFs, thereby promoting tumor progression. Importantly, tumor growth inhibition by HDAC inhibition was dependent on SULF1 expression in CAFs, and CRC patients with more SULF1+ CAFs were more responsive to treatment with the HDAC inhibitor chidamide. Collectively, these findings unveil the critical role of SULF1+ CAFs in CRC and provide a strategy to stratify CRC patients for HDAC inhibitor treatment.

7.
J Immunother Cancer ; 12(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244216

RESUMEN

BACKGROUND: Stage IV gastric cancer is a highly heterogeneous and lethal tumor with few therapeutic strategies. The combination of programmed cell death protein 1 inhibitors and chemotherapy is currently the standard frontline treatment regimen for advanced gastric cancer. Nevertheless, it remains a great challenge to screen the beneficiaries of immunochemotherapy and expand indications for this treatment regimen. METHODS: We conducted a pathological assessment to ascertain the importance of tertiary lymphoid structures based on the tissue samples collected from patients with stage IV gastric cancer (n=15) both prior to and following immunochemotherapy treatment. Additionally, we used spatial (n=10) and single-cell transcriptional analysis (n=97) to investigate the key regulators of tertiary lymphoid structures (TLSs). Multiplex immunofluorescence and image analysis (n=34) were performed to explore the association between tumor-infiltrating CXCL13+ CD160+ CD8+ T cells and TLSs. The relationship between CXCL13+ CD160+ CD8+ T cells and the responsiveness to immunotherapy was also evaluated by multiplex immunofluorescence and image analysis approaches (n=15). Furthermore, we explored the intrinsic characteristics of CXCL13+ CD160+ CD8+ T cells through various experimental techniques, including quantitative reverse transcription-PCR, western blot, and flow cytometry. RESULTS: We found that responders exhibited higher levels of TLSs and CXCL13+ CD160+ CD8+ T cells in biopsy tissues prior to immunochemotherapy compared with non-responders. Following conversion therapy, responders also had a higher percentage of mature TLSs and a higher number of CXCL13+ CD160+ CD8+ T cells in surgical resections. Moreover, we discovered that vitamin B6 in CD160+ CD8+ T cells could reduce the ubiquitination modification of HIF-1α by MDM2, thereby attenuating the degradation of HIF-1α. Consequently, this led to the transcriptional upregulation of CXCL13 expression, facilitating the recruitment of CXCR5+ B cells and the formation of TLSs. CONCLUSION: The number and maturity of TLSs, along with the extent of CXCL13+ CD160+ CD8+ T-cell infiltration, might function as potential indicators for assessing the effectiveness of immunotherapy in treating gastric malignancies. Furthermore, our research suggests that vitamin B6 could enhance the secretion of CXCL13 by CD160+ CD8+ T cells by reducing the degradation of HIF-1α. Additionally, we demonstrate that vitamin B6 supplementation or targeting pyridoxal kinase could substantially improve the efficacy of immunotherapies for gastric cancer.


Asunto(s)
Antígenos CD , Linfocitos T CD8-positivos , Quimiocina CXCL13 , Inmunoterapia , Neoplasias Gástricas , Estructuras Linfoides Terciarias , Humanos , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/terapia , Neoplasias Gástricas/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Estructuras Linfoides Terciarias/inmunología , Quimiocina CXCL13/metabolismo , Inmunoterapia/métodos , Masculino , Femenino , Antígenos CD/metabolismo , Persona de Mediana Edad , Proteínas Ligadas a GPI/metabolismo , Anciano , Receptores Inmunológicos/metabolismo , Microambiente Tumoral , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Estadificación de Neoplasias
8.
Cancer Res Commun ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292169

RESUMEN

Treatment for patients with Multiple Myeloma (MM) has experienced rapid development and improvement in recent years, however, patients continue to experience relapse and MM remains largely incurable. B cell maturation antigen (BCMA) has been widely recognized as a promising target for treatment of MM due to its exclusive expression in B cell linage cells and its critical role in the growth and survival of malignant plasma cells. Here, we introduce STI-8811, a BCMA-targeting antibody drug conjugate linked to an auristatin-derived duostatin payload via an enzymatically cleavable peptide linker, using our proprietary C-lock technology. STI-8811 exhibits target specific binding activity and rapid internalization, leading to G2/M cell cycle arrest, caspase 3/7 activation and apoptosis in BCMA-expressing tumor cells in vitro. Soluble BCMA (sBCMA) is shed by MM cells into the blood and increases with disease progression, competing for ADC binding and reducing its efficacy. We report enhanced cytotoxic activity in the presence of high levels of sBCMA compared to a belantamab mafodotin biosimilar (J6M0-mcMMAF). STI-8811 demonstrated greater in vivo activity than J6M0-mcMMAF in solid and disseminated multiple myeloma models, including tumor models with low BCMA expression and/or in large solid tumors representing soft tissue plasmacytomas. In Cynomolgus monkeys, STI-8811 was well tolerated, with toxicities consistent with other BCMA targeting ADCs with auristatin payloads in clinical studies. STI-8811 has the potential to outperform current clinical candidates with lower toxicity and higher activity under conditions found in patients with advanced disease.

9.
J Mol Biol ; 436(17): 168613, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39237206

RESUMEN

Fungal pathogens pose significant threats to plant health by secreting effectors that manipulate plant-host defences. However, identifying effector proteins remains challenging, in part because they lack common sequence motifs. Here, we introduce Fungtion (Fungal effector prediction), a toolkit leveraging a hybrid framework to accurately predict and visualize fungal effectors. By combining global patterns learned from pretrained protein language models with refined information from known effectors, Fungtion achieves state-of-the-art prediction performance. Additionally, the interactive visualizations we have developed enable researchers to explore both sequence- and high-level relationships between the predicted and known effectors, facilitating effector function discovery, annotation, and hypothesis formulation regarding plant-pathogen interactions. We anticipate Fungtion to be a valuable resource for biologists seeking deeper insights into fungal effector functions and for computational biologists aiming to develop future methodologies for fungal effector prediction: https://step3.erc.monash.edu/Fungtion/.


Asunto(s)
Biología Computacional , Proteínas Fúngicas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Biología Computacional/métodos , Programas Informáticos , Hongos/metabolismo , Hongos/química , Interacciones Huésped-Patógeno , Plantas/microbiología , Plantas/metabolismo
10.
Lipids Health Dis ; 23(1): 283, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232765

RESUMEN

BACKGROUND: Sepsis-induced cardiomyopathy (SICM) is a common and life-threatening complication of sepsis, significantly contributing to elevated mortality. This study aimed to identify crucial indicators for the prompt and early assessment of SICM. METHODS: Patients diagnosed with sepsis or SICM within 24 h of intensive care unit (ICU) admission were enrolled in this prospective observational study. Patients were assigned to the training set, validation set and external test set. The primary endpoint was 7-day ICU mortality, and the secondary endpoint was 28-day ICU mortality. Three machine learning algorithms were utilized to identify relevant indicators for diagnosing SICM, incorporating 64 indicators including serum biomarkers associated with cardiac, renal, and liver function, lipid metabolism, coagulation, and inflammation. Internal and external validations were performed on the screening results. Patients were then stratified based on the cut-off value of the most diagnostically effective biomarker identified, and their prognostic outcomes were observed and analyzed. RESULTS: A total of 270 patients were included in the training and validation set, and 52 patients were included in the external test set. Age, sex, and comorbidities did not significantly differ between the sepsis and SICM groups (P > 0.05). The support vector machine (SVM) algorithm identified six indicators with an accuracy of 84.5%, the random forest (RF) algorithm identified six indicators with an accuracy of 81.9%, and the logistic regression (LR) algorithm screened out seven indicators. Following rigorous selection, a diagnostic model for sepsis-induced cardiomyopathy was established based on heart-type fatty acid binding protein (H-FABP) (OR 1.308, 95% CI 1.170-1.462, P < 0.001) and retinol-binding protein (RBP) (OR 1.020, 95% CI 1.006-1.034, P < 0.05). H-FABP alone exhibited the highest diagnostic performance in both the internal (AUROC 0.689, P < 0.05) and external sets (AUROC 0.845, P < 0.05). Patients with SICM were further stratified based on an H-FABP diagnostic cut-off value of 8.335 ng/mL. Kaplan-Meier curve analysis demonstrated that elevated H-FABP levels at admission were associated with higher 7-day ICU mortality in patients with SICM (P < 0.05). CONCLUSIONS: This study revealed that H-FABP concentrations measured within 24 h of patient admission could serve as a crucial biomarker for the early and rapid diagnosis and short-term prognostic evaluation of SICM.


Asunto(s)
Biomarcadores , Cardiomiopatías , Proteínas de Unión a Ácidos Grasos , Sepsis , Humanos , Masculino , Femenino , Biomarcadores/sangre , Cardiomiopatías/sangre , Cardiomiopatías/diagnóstico , Cardiomiopatías/etiología , Sepsis/sangre , Sepsis/complicaciones , Sepsis/diagnóstico , Persona de Mediana Edad , Estudios Prospectivos , Proteínas de Unión a Ácidos Grasos/sangre , Anciano , Proteína 3 de Unión a Ácidos Grasos/sangre , Unidades de Cuidados Intensivos , Pronóstico , Curva ROC , Máquina de Vectores de Soporte
11.
Small ; : e2406375, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235360

RESUMEN

Light-induced water splitting (hν-WS) for the production of hydrogen as a solar fuel is considered a promising sustainable strategy for the replacement of fossil fuels. An efficient system for hν-WS involves a photoactive material that, upon shining light, is capable of separating and transferring charges to catalysts for the hydrogen and oxygen evolution processes. Covalent triazine-based frameworks (CTFs) represent an interesting class of 2D organic light-absorbing materials that have recently emerged thanks to their tunable structural, optical and morphological properties. Typically, catalysts (Cat) are metallic nanoparticles generated in situ after photoelectroreduction of metal precursors or directly drop-casted on top of the CTF material to generate Cat-CTF assemblies. In this work, the synthesis, characterization and photocatalytic performance of a novel hybrid material, Ru-CTF, is reported, based on a CTF structure featuring dangling pyridyl groups that allow the Ru-tda (tda is [2,2':6',2'"-terpyridine]-6,6'"-dicarboxylic acid) water oxidation catalyst (WOC) unit to coordinate via covalent bond. The Ru-CTF molecular hybrid material can carry out the light-induced water oxidation reaction efficiently at neutral pH, reaching values of maximum TOF of 17 h-1 and TONs in the range of 220 using sodium persulfate as a sacrificial electron acceptor.

12.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274623

RESUMEN

The aim is to reduce the elastic deformation of the web and side walls of low-stiffness thin-walled beams when the floating fixture method is used. This paper takes the number and position of fixture points as the optimization variables, establishes a calculation model of elastic deformation, and constructs the objective function of maximum total elastic deformation. An optimized solution utilizing the augmented multiplier method is employed, which forms the basis for the fixture layout optimization method to reduce the elastic deformation of low-stiffness thin-walled beams. A theoretical calculation, simulation analysis, and the fixture layout optimization of total maximum elastic deformation were completed using an aluminum alloy low-stiffness thin-walled beam as an example. The results show that based on the optimized layout, the average relative error between the calculated value and the simulated value of total maximum elastic deformation is 17.43%, and the simulated value of maximum elastic deformation is reduced by 48.49% after optimizing the fixture layout. The measured value is reduced by 0.02 mm on average, and deformation is reduced by 74.07%, which verifies the effectiveness of the floating fixture layout optimization control of machining elastic deformation proposed in this paper.

13.
J Mol Graph Model ; 133: 108851, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39232489

RESUMEN

Human oral bioavailability is a crucial factor in drug discovery. In recent years, researchers have constructed a variety of different prediction models. However, given the limited size of human oral bioavailability data sets, the challenge of making accurate predictions with small sample sizes has become a critical issue in the field. The deep forest model, with its adaptively determinable number of cascade levels, can perform exceptionally well even on small-scale data. However, the original deep forest suffers unbalanced multi-grained scanning process and premature stopping of cascade forest training. In this paper, we propose a human oral bioavailability predict method based on an improved deep forest, called balanced multi-grained scanning mapping cascade forest (bgmc-forest). Firstly, the mordred descriptor method is selected to feature extraction, then enhanced features are obtained by the improved balanced multi-grained scanning, which solves the problem of missing features at both ends. And finally, the prediction results are obtained by feature mapping cascaded forests, which is based on principal component analysis and cascade forests, ensures the effectiveness of the cascade forest. The superiority of the model constructed in this paper is demonstrated through comparative experiments, while the effectiveness of the improved module is verified through ablation experiments. Finally the decision-making process of the model is explained by the shapley additive explanations interpretation algorithm.

14.
Front Cardiovasc Med ; 11: 1416112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257847

RESUMEN

Background: Atherosclerotic plaque rupture is a major cause of heart attack. Previous studies have shown that immune cells are involved in the development of atherosclerosis, but different immune cells play different roles. The aim of this study was to investigate the causal relationship between immunological traits and myocardial infarction (MI). Methods: To assess the causal association of immunological profiles with myocardial infarction based on publicly available genome-wide studies, we used a two-sample mendelian randomization (MR) approach with inverse variance weighted (IVW) as the main analytical method. Sensitivity analyses were used to assess heterogeneity and horizontal pleiotropy. Results: A two-sample MR analysis was conducted using IVW as the primary method. At a significance level of 0.001, we identified 47 immunophenotypes that have a significant causal relationship with MI. Seven of these were present in B cells, five in cDC, four in T cells at the maturation stage, six in monocytes, five in myeloid cells, 12 in TBNK cells, and eight in Treg cells. Sensitivity analyses were performed to confirm the robustness of the MR results. Conclusions: Our results provide strong evidence that multiple immune cells have a causal effect on the risk of myocardial infarction. This discovery provides a new avenue for the development of therapeutic treatments for myocardial infarction and a new target for drug development.

16.
Vaccines (Basel) ; 12(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39204051

RESUMEN

Vaccines has long been the focus of antiviral immunotherapy research. Viral epitopes are thought to be useful biomarkers for immunotherapy (both antibody-based and cellular). In this study, we designed a novel vaccine molecule, the Hantaan virus (HTNV) glycoprotein (GP) tandem Th epitope molecule (named the Gnc molecule), in silico. Subsequently, computer analysis was used to conduct a comprehensive and in-depth study of the various properties of the molecule and its effects as a vaccine molecule in the body. The Gnc molecule was designed for DNA vaccines and optimized with a lysosomal-targeting membrane protein (LAMP) strategy. The effects of GP-derived Th epitopes and multiepitope vaccines were initially verified in animals. Our research has resulted in the design of two vaccines based on effective antiviral immune targets. The effectiveness of molecular therapies has also been preliminarily demonstrated in silico and in laboratory animals, which lays a foundation for the application of a vaccines strategy in the field of antivirals.

17.
Ecotoxicol Environ Saf ; 283: 116950, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39213750

RESUMEN

Female reproductive timing and lifespan, with a close relation to long-term health outcomes, have been altered in U.S. women over the past decades. However, epidemiologic evidence of the potential causes was lacking. On the basis of 1981 naturally postmenopausal women from the National Health and Nutrition Examination Survey 1999-2020, this study aimed to investigate the associations of urinary heavy metals with age at menarche, age at menopause, and reproductive lifespan. Multivariate generalized linear regression and addictive models were used for single metal exposure analysis, and weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models were employed for mixed exposures. In the fully adjusted model, higher urinary antimony concentration was associated with earlier age at menarche of 0.137 years, while higher concentrations of cadmium, cesium, lead, antimony, and thallium were associated with delayed age at menopause of 0.396-0.687 years. Additionally, urinary barium, cesium, lead, antimony, and thallium levels were associated with longer reproductive lifespan ranging between 0.277 and 0.713 years. Both WQS and BKMR models showed significantly positive associations of metal mixtures with age at menopause (ß: 0.667, 95 % CI: 0.120-1.213) and reproductive lifespan (ß: 0.686, 95 % CI: 0.092-1.280), with cadmium and lead identified as principal contributors. In conclusion, heavy metal exposures were associated with reproductive timing and lifespan of U.S. women, highlighting the need for further prevention and intervention strategies.


Asunto(s)
Menarquia , Menopausia , Metales Pesados , Reproducción , Humanos , Femenino , Metales Pesados/orina , Estudios Transversales , Menopausia/orina , Persona de Mediana Edad , Estados Unidos , Adulto , Reproducción/efectos de los fármacos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/orina , Encuestas Nutricionales , Anciano , Factores de Edad , Teorema de Bayes , Longevidad/efectos de los fármacos
18.
Sci Adv ; 10(34): eadq3087, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178250

RESUMEN

RNA polymerase IV (Pol IV) forms a complex with RNA-directed RNA polymerase 2 (RDR2) to produce double-stranded RNA (dsRNA) precursors essential for plant gene silencing. In the "backtracking-triggered RNA channeling" model, Pol IV backtracks and delivers its transcript's 3' terminus to RDR2, which synthesizes dsRNA. However, the mechanisms underlying Pol IV backtracking and RNA protection from cleavage are unclear. Here, we determined cryo-electron microscopy structures of Pol IV elongation complexes at four states of its nucleotide addition cycle (NAC): posttranslocation, guanosine triphosphate-bound, pretranslocation, and backtracked states. The structures reveal that Pol IV maintains an open DNA cleft and kinked bridge helix in all NAC states, loosely interacts with the nucleoside triphosphate substrate, and barely contacts proximal backtracked nucleotides. Biochemical data indicate that Pol IV is inefficient in forward translocation and RNA cleavage. These findings suggest that Pol IV transcription elongation is prone to backtracking and incapable of RNA hydrolysis, ensuring efficient dsRNA production by Pol IV-RDR2.


Asunto(s)
Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/química , Modelos Moleculares , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Elongación de la Transcripción Genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/química , ARN Bicatenario/metabolismo , Unión Proteica , Transcripción Genética
19.
BMC Neurol ; 24(1): 276, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123191

RESUMEN

BACKGROUND: Recognizing the predictors of poor short-term prognosis after first-line immunotherapy in patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is essential for individualized treatment strategy. The objective of this study was to ascertain the factors that forecast short-term prognosis in patients with anti-NMDAR encephalitis, develop a prognostic prediction model, and authenticate its efficacy in an external validation cohort. Further, all patients were followed-up long-term to assess the factors of long-term outcome and relapses. METHODS: A prospective enrollment of patients diagnosed with anti-NMDAR encephalitis was conducted across five clinical centers in China from June 2014 to Mar 2022. The enrolled patients were divided into the derivation and validation sets based on enrollment time. The short-term prognostic model was visualized using a nomogram. Further, all patients were followed-up long-term to assess the factors of long-term outcome. RESULTS: This study found that poor short-term prognosis was a risk factor for poor long-term outcome (6-month prognosis, OR 29.792, 95%CI 6.507-136.398, p < 0.001; 12-month prognosis, OR 15.756, 95%CI 3.384-73.075, p < 0.001; 24-month prognosis, OR 5.500, 95%CI 1.045-28.955, p = 0.044). Abnormal behavior or cognitive dysfunction (OR 8.57, 95%CI 1.48-49.79, p = 0.017), consciousness impairment (OR19.32, 95%CI 3.03-123.09, p = 0.002), autonomic dysfunction or central hypoventilation (OR 5.66, 95%CI 1.25-25.75, p = 0.025), CSF pleocytosis (OR 4.33, 95%CI 1.48-12.65, p = 0.007), abnormal EEG (OR 5.48, 95% CI 1.09-27.54, p = 0.039) were independent predictors for a poor short-term prognosis after first-line immunotherapy. A nomogram that incorporated those factors showed good discrimination and calibration abilities. The area under the curve (AUC) for the prognostic model were 0.866 (95%CI: 0.798-0.934) with a sensitivity of 0.761 and specificity of 0.869. CONCLUSION: We established and validated a prognostic model that can provide individual prediction of short-term prognosis after first-line immunotherapy for patients with anti-NMDAR encephalitis. This practical prognostic model may help neurologists to predict the short-term prognosis early and potentially assist in adjusting appropriate treatment timely.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Humanos , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Masculino , Femenino , Pronóstico , Adulto , China/epidemiología , Adulto Joven , Adolescente , Estudios Prospectivos , Niño , Persona de Mediana Edad , Nomogramas , Estudios de Seguimiento , Pueblos del Este de Asia
20.
Angew Chem Int Ed Engl ; : e202412188, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132954

RESUMEN

Photoelectrochemical devices require solid anodes and cathodes for the easy assembling of the whole cell and thus redox catalysts need to be deposited on the electrodes. Typical catalyst deposition involves drop casting, spin coating, doctor blading or related techniques to generate modified electrodes where the active catalyst in contact with the electrolyte is only a very small fraction of the deposited mass. We have developed a methodology where the redox catalyst is deposited at the electrode based on supramolecular interactions, namely CH-π and π-π between the catalyst and the surface. This generates a very well-defined catalysts-surface structure and electroactivity, together with a very large catalytic response. This approach represents a new anchoring strategy that can be applied to catalytic redox reactions in heterogeneous phase and compared to traditional methods involves about 4-5 orders of magnitude less mass deposition to achieve comparable activity and with very well-behaved electroactivity and stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA