Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 522
1.
Langmuir ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38743262

The synergistic effect between bimetallic catalysts has been confirmed as an effective method for activating persulfate (PMS). Therefore, we immobilized copper-cobalt on chitosan to prepare bimetallic carbon catalysts for PMS activation and degradation of reactive dyes. Experimental results demonstrate that the CuCo-CTs/PMS catalytic degradation system exhibits excellent degradation performance toward various types of reactive dyes (e.g., Ethyl violet, Chlortalidone, and Di chlorotriazine), with degradation rates reaching 90% within 30 min. CuCo-CTs exhibit high catalytic activity over a wide pH range of 3-11 at room temperature and under static conditions, degrading over 92% of RV5 within 60 min. ultraviolet-visible (UV-vis) spectroscopy and color changes in the dye solution confirm the effective degradation of RV5, with a degradation rate of 97.2% within 10 min. Additionally, CuCo-CTs demonstrate good stability and reusability, maintaining a degradation rate of 92.8% after eight cycles. Kinetic studies indicate that the degradation follows pseudo-first-order kinetics. Furthermore, based on the results of radical scavenging experiments, the catalytic degradation mechanism of the dye involves both radical and nonradical pathways, with 1O2 identified as the primary active species. This study provides insights and experimental evidence for the application of persulfate oxidation in the treatment of dyeing wastewater.

2.
BMC Health Serv Res ; 24(1): 606, 2024 May 09.
Article En | MEDLINE | ID: mdl-38720312

BACKGROUND: Assisted index case testing (ICT), in which health care workers take an active role in referring at-risk contacts of people living with HIV for HIV testing services, has been widely recognized as an evidence-based intervention with high potential to increase status awareness in people living with HIV. While the available evidence from eastern and southern Africa suggests that assisted ICT can be an effective, efficient, cost-effective, acceptable, and low-risk strategy to implement in the region, it reveals that feasibility barriers to implementation exist. This study aims to inform the design of implementation strategies to mitigate these feasibility barriers by examining "assisting" health care workers' experiences of how barriers manifest throughout the assisted ICT process, as well as their perceptions of potential opportunities to facilitate feasibility. METHODS: In-depth interviews were conducted with 26 lay health care workers delivering assisted ICT in Malawian health facilities. Interviews explored health care workers' experiences counseling index clients and tracing these clients' contacts, aiming to inform development of a blended learning implementation package. Transcripts were inductively analyzed using Dedoose coding software to identify and describe key factors influencing feasibility of assisted ICT. Analysis included multiple rounds of coding and iteration with the data collection team. RESULTS: Participants reported a variety of barriers to feasibility of assisted index case testing implementation, including sensitivities around discussing ICT with clients, privacy concerns, limited time for assisted index case testing amid high workloads, poor quality contact information, and logistical obstacles to tracing. Participants also reported several health care worker characteristics that facilitate feasibility (knowledge, interpersonal skills, non-stigmatizing attitudes and behaviors, and a sense of purpose), as well as identified process improvements with the potential to mitigate barriers. CONCLUSIONS: Maximizing assisted ICT's potential to increase status awareness in people living with HIV requires equipping health care workers with effective training and support to address and overcome the many feasibility barriers that they face in implementation. Findings demonstrate the need for, as well as inform the development of, implementation strategies to mitigate barriers and promote facilitators to feasibility of assisted ICT. TRIAL REGISTRATION: NCT05343390. Date of registration: April 25, 2022.


Feasibility Studies , HIV Infections , Qualitative Research , Humans , Malawi , HIV Infections/diagnosis , Female , Male , Adult , Interviews as Topic , HIV Testing/methods , Contact Tracing/methods , Community Health Workers
3.
Environ Pollut ; 353: 124153, 2024 May 13.
Article En | MEDLINE | ID: mdl-38750808

Isoproturon (IPU), a widely utilized phenylurea herbicide, is recognized as an emerging contaminant. Previous studies have predominantly attributed the degradation of IPU in natural waters to indirect photolysis by natural organic matter (NOM). Here, we demonstrate that nitrite (NO2-) also serves as an important photosensitizer that induces the photo-degradation of IPU. Through radical quenching tests, we identify hydroxyl radicals (•OH) and nitrogen dioxide radicals (NO2•) originating from NO2- photolysis as key players in IPU degradation, resulting in the generation of a series of hydroxylated and nitrated byproducts. Moreover, we demonstrate a synergistic effect on the photo-transformation of IPU when both NOM and NO2- are present in the reaction mixture. The observed rate constant (kobs) for IPU removal increases to 0.0179 ± 0.0002 min-1 in the co-presence of NO2- (50 µM) and NOM (2.5 mgC/L), surpassing the sum of those in the presence of each alone (0.0135 ± 0.0004 min-1). NOM exhibits multifaceted roles in the indirect photolysis of IPU. It can be excited by UV and transformed to excited triplet states (3NOM*) which oxidize IPU to IPU•+ that undergoes further degradation. Simultaneously, NOM can mitigate the reaction by reducing the IPU•+ intermediate back to the parent IPU. However, the presence of NO2- alters this dynamic, as IPU•+ rapidly couples with NO2•, accelerating IPU degradation and augmenting the formation of mono-nitrated IPU. These findings provide in-depth understandings on the photochemical transformation of environmental contaminants, especially phenylurea herbicides, in natural waters where NOM and NO2- coexist.

4.
J Cancer ; 15(10): 3183-3198, 2024.
Article En | MEDLINE | ID: mdl-38706897

Background: The metastasis of colorectal cancer (CRC) is one of the significant barriers impeding its treated consequence and bring about high mortality, less surgical resection rate and poor prognosis of CRC patients. PSAT1 is an enzyme involved in serine biosynthesis. The studies showed that PSAT1 plays the part of a crucial character in the regulation of tumor metastasis. And Epithelial-Mesenchymal Transition (EMT) is a process of cell reprogramming in which epithelialcells obtain mesenchymal phenotypes. It is a crucial course in promoting cell metastasis and the progression of malignant tumors. The relationship between PSAT1 and EMT in colorectal cancer, as well as the underlying molecular mechanisms, remains enigmatic and warrants thorough exploration. These findings suggest that PSAT1 may serve as a promising therapeutic target for mitigating colorectal cancer metastasis and holds the potential to emerge as a valuable prognostic biomarker in forthcoming research endeavors. Materials and Methods: Utilizing TCGA dataset in conjunction with clinical CRC specimens, our initial focus was directed towards an in-depth examination of PSAT1 expression within CRC, specifically exploring its potential correlation with the adverse prognostic outcomes experienced by patients. Furthermore, we conducted a comprehensive investigation into the regulatory influence exerted by PSAT1 on CRC through the utilization of siRNA knockdown techniques. In the realm of in vitro experimentation, we meticulously evaluated the impact of PSAT1 on various facets of CRC progression, including cell migration, invasion, proliferation, and colony formation. In order to elucidate the intricate effects in question, we adopted a multifaceted methodology that encompassed a range of assays and analyses. These included wound healing assays, transwell assays, utilization of the Cell Counting Kit-8 (CCK-8) assay, and colony formation assays. By employing this diverse array of investigative techniques, we were able to achieve a comprehensive comprehension of the multifaceted role that PSAT1 plays in the pathogenesis of colorectal cancer. This multifarious analysis greatly contributed to our in-depth understanding of the complex mechanisms at play in colorectal cancer pathogenesis. Using WB and PCR experiments, we found that PSAT1 has a role in regulating EMT development in CRC.In terms of mechanism, we found that PSAT1 affected EMT by Regulating Pl3K/AKT Signaling Pathway. Results: Our investigation revealed a noteworthy down-regulation of PSAT1 expression in CRC specimens. Importantly, this down-regulation exhibited a significant positive correlation with the unfavorable prognosis of patients afflicted with CRC. Functionally, our study showcased that the siRNA-mediated knockdown of PSAT1 markedly enhanced various key aspects of CRC pathogenesis in an in vitro setting. Specifically, this included a substantial promotion of CRC cell migration, invasion, proliferation, and colony formation. Moreover, the silencing of PSAT1 also demonstrated a substantial promotion of the EMT process. Intriguingly, our research unveiled a hitherto unexplored mechanism underlying the regulatory role of PSAT1 in CRC and EMT. We have established, for the first time, that PSAT1 exerts its influence by modulating the activation of the PI3K/AKT Signaling Pathway. This mechanistic insight provides a valuable contribution to the understanding of the molecular underpinnings of CRC progression and EMT induction mediated by PSAT1. Conclusions: In unison, our research findings shed light on the previously uncharted and significant role of the PSAT1/PI3K/AKT axis in the initiation of the EMT process in CRC. Furthermore, our discoveries introduce a novel biomarker with potential implications for the clinical diagnosis and treatment of CRC.

5.
Biomaterials ; 309: 122607, 2024 May 07.
Article En | MEDLINE | ID: mdl-38759487

The use of CAR-T cells in treating solid tumors frequently faces significant challenges, mainly due to the heterogeneity of tumor antigens. This study assessed the efficacy of an acidity-targeting transition-aided universal chimeric antigen receptor T (ATT-CAR-T) cell strategy, which is facilitated by an acidity-targeted transition. Specifically, the EGFRvIII peptide was attached to the N-terminus of a pH-low insertion peptide. Triggered by the acidic conditions of the tumor microenvironment, this peptide alters its structure and selectively integrates into the membrane of solid tumor cells. The acidity-targeted transition component effectively relocated the EGFRvIII peptide across various tumor cell membranes; thus, allowing the direct destruction of these cells by EGFRvIII-specific CAR-T cells. This method was efficient even when endogenous antigens were absent. In vivo tests showed marked antigen modification within the acidic tumor microenvironment using this component. Integrating this component with CAR-T cell therapy showed high effectiveness in combating solid tumors. These results highlight the capability of ATT-CAR-T cell therapy to address the challenges presented by tumor heterogeneity and expand the utility of CAR-T cell therapy in the treatment of solid tumors.

6.
J Inorg Biochem ; 257: 112610, 2024 May 12.
Article En | MEDLINE | ID: mdl-38761580

Drug resistance has been a major problem for cancer chemotherapy, especially for glioblastoma multiforme that is aggressive, heterogeneous and recurrent with <3% of a five-year survival and limited methods of clinical treatment. To overcome the problem, great efforts have recently been put in searching for agents inducing death of tumor cells via various non-apoptotic pathways. In the present work, we report for the first time that vanadyl complexes, i.e. bis(acetylacetonato)oxidovanadium (IV) (VO(acac)2), can cause mitotic catastrophe and methuotic death featured by catastrophic macropinocytic vacuole accumulation particularly in glioblastoma cells (GCs). Hence, VO(acac)2 strongly suppressed growth of GCs with both in vitro (IC50 = 4-6 µM) and in vivo models, and is much more potent than the current standard-of-care drug Temozolomide. The selective index is as high as ∼10 or more on GCs over normal neural cells. Importantly, GCs respond well to vanadium treatment regardless whether they are carrying IDH1 wild type gene that causes drug resistance. VO(acac)2 may induce methuosis via the Rac-Mitogen-activated protein kinase kinase 4 (MKK4)-c-Jun N-terminal kinase (JNK) signaling pathway. Furthermore, VO(acac)2-induced methuosis is not through a immunogenicity mechanism, making vanadyl complexes safe for interventional therapy. Overall, our results may encourage development of novel vanadium complexes promising for treatment of neural malignant tumor cells.

7.
Adv Sci (Weinh) ; : e2400594, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689503

Proteolysis targeting chimeras (PROTACs) have emerged as a promising strategy for drug discovery and exploring protein functions, offering a revolutionary therapeutic modality. Currently, the predominant approach to PROTACs discovery mainly relies on an empirical design-synthesis-evaluation process involving numerous cycles of labor-intensive synthesis-purification and bioassay data collection. Therefore, the development of innovative methods to expedite PROTAC synthesis and exploration of chemical space remains highly desired. Here, a direct-to-biology strategy is reported to streamline the synthesis of PROTAC libraries on plates, enabling the seamless transfer of reaction products to cell-based bioassays without the need for additional purification. By integrating amide coupling and light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) photoclick chemistry into a plate-based synthetic process, this strategy produces PROTAC libraries with high efficiency and structural diversity. Moreover, by employing this platform for PROTACs screening, we smoothly found potent PROTACs effectively inhibit triple-negative breast cancer (TNBC) cell growth and induce rapid, selective targeted degradation of cyclin-dependent kinase 9 (CDK9). The study introduces a versatile platform for assembling PROTACs on plates, followed by direct biological evaluation. This approach provides a promising opportunity for high-throughput synthesis of PROTAC libraries, thereby enhancing the efficiency of exploring chemical space and accelerating the discovery of PROTACs.

8.
Front Psychol ; 15: 1371820, 2024.
Article En | MEDLINE | ID: mdl-38689727

As a motivational factor, uniqueness drives individuals to seek and choose unique goods or experiences. The act of wearing masks obscures individuals' facial features and influences their desire for uniqueness. This study aims to explore how wearing masks promotes individual uniqueness- seeking behavior. Three experiments were performed using various product categories (Starbucks coffee cups, sweatshirts, suitcases, and baseball caps) and sample types (college student and adult samples). Experiment results show that wearing masks obscures individuals' facial features and weakens their self- perceived uniqueness, thereby increasing their willingness to actively purchase unique products. This study is the first to examine the effect of wearing masks on individuals' choice of unique products. Practically, the results suggest that customized products can compensate for the lack of self-perceived uniqueness brought about by facial occlusion, thus providing valuable guidance for companies and retailers that offer customized services in formulating and designing marketing strategies.

9.
Metabolomics ; 20(3): 59, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773019

INTRODUCTION: Thyroid cancer incidence rate has increased substantially worldwide in recent years. Fine needle aspiration biopsy (FNAB) is currently the golden standard of thyroid cancer diagnosis, which however, is invasive and costly. In contrast, breath analysis is a non-invasive, safe and simple sampling method combined with a promising metabolomics approach, which is suitable for early cancer diagnosis in high volume population. OBJECTIVES: This study aims to achieve a more comprehensive and definitive exhaled breath metabolism profile in papillary thyroid cancer patients (PTCs). METHODS: We studied both end-tidal and mixed expiratory breath, solid-phase microextraction gas chromatography coupled with high resolution mass spectrometry (SPME-GC-HRMS) was used to analyze the breath samples. Multivariate combined univariate analysis was applied to identify potential breath biomarkers. RESULTS: The biomarkers identified in end-tidal and mixed expiratory breath mainly included alkanes, olefins, enols, enones, esters, aromatic compounds, and fluorine and chlorine containing organic compounds. The area under the curve (AUC) values of combined biomarkers were 0.974 (sensitivity: 96.1%, specificity: 90.2%) and 0.909 (sensitivity: 98.0%, specificity: 74.5%), respectively, for the end-tidal and mixed expiratory breath, indicating of reliability of the sampling and analysis method CONCLUSION: This work not only successfully established a standard metabolomic approach for early diagnosis of PTC, but also revealed the necessity of using both the two breath types for comprehensive analysis of the biomarkers.


Biomarkers, Tumor , Breath Tests , Gas Chromatography-Mass Spectrometry , Metabolomics , Solid Phase Microextraction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Metabolomics/methods , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/metabolism , Breath Tests/methods , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Female , Male , Middle Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Adult , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/metabolism , Early Detection of Cancer/methods , Aged
10.
Chemistry ; : e202400566, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642049

The prosperity of the lithium-ion battery market is inevitably accompanied by the depletion of corresponding resources and the accumulation of spent batteries in a dialectical manner. Spent lithium-ion batteries are harboring the characteristics of hazardous waste and high-value resources, so efficient recycling is of great significance. The cathode material is considered as an interesting target for repurposing. Despite some important reviews give commendable emphasis to recycling technologies, there is still a dearth of exploration of recycling mechanisms. This deficiency of awareness highlights the need for further research and development in this area. This review aims to systematically review and thoroughly discuss the reduction reaction mechanism of each method regarding different cathode materials. And systematically digest the selection of reducing agent and the effect of reduction reaction on material regeneration are systematically digested, as well as the impact of the reduction reaction on the regeneration of materials. This review emphasizes the importance of balancing efficiency, economic and environmental benefits in reuse technologies. Finally, the review proposes an outlook on the opportunities and challenges facing the reuse of key materials for next-generation spent batteries aimed at promoting the green and sustainable development of lithium-ion batteries, circular economy and ecological balance.

11.
Nat Commun ; 15(1): 3171, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609379

The lifetime of electronic coherences found in photosynthetic antennas is known to be too short to match the energy transfer time, rendering the coherent energy transfer mechanism inactive. Exciton-vibrational coherence time in excitonic dimers which consist of two chromophores coupled by excitation transfer interaction, can however be much longer. Uncovering the mechanism for sustained coherences in a noisy biological environment is challenging, requiring the use of simpler model systems as proxies. Here, via two-dimensional electronic spectroscopy experiments, we present compelling evidence for longer exciton-vibrational coherence time in the allophycocyanin trimer, containing excitonic dimers, compared to isolated pigments. This is attributed to the quantum phase synchronization of the resonant vibrational collective modes of the dimer, where the anti-symmetric modes, coupled to excitonic states with fast dephasing, are dissipated. The decoupled symmetric counterparts are subject to slower energy dissipation. The resonant modes have a predicted nearly 50% reduction in the vibrational amplitudes, and almost zero amplitude in the corresponding dynamical Stokes shift spectrum compared to the isolated pigments. Our findings provide insights into the mechanisms for protecting coherences against the noisy environment.

12.
PLoS One ; 19(4): e0301420, 2024.
Article En | MEDLINE | ID: mdl-38593140

The COVID-19 pandemic has been present globally for more than three years, and cross-border transmission has played an important role in its spread. Currently, most predictions of COVID-19 spread are limited to a country (or a region), and models for cross-border transmission risk assessment remain lacking. Information on imported COVID-19 cases reported from March 2020 to June 2022 was collected from the National Health Commission of China, and COVID-19 epidemic data of the countries of origin of the imported cases were collected on data websites such as WHO and Our World in Data. It is proposed to establish a prediction model suitable for the prevention and control of overseas importation of COVID-19. Firstly, the SIR model was used to fit the epidemic infection status of the countries where the cases were exported, and most of the r2 values of the fitted curves obtained were above 0.75, which indicated that the SIR model could well fit different countries and the infection status of the region. After fitting the epidemic infection status data of overseas exporting countries, on this basis, a SIR-multiple linear regression overseas import risk prediction combination model was established, which can predict the risk of overseas case importation, and the established overseas import risk model overall P <0.05, the adjusted R2 = 0.7, indicating that the SIR-multivariate linear regression overseas import risk prediction combination model can obtain better prediction results. Our model effectively estimates the risk of imported cases of COVID-19 from abroad.


COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , China/epidemiology , Linear Models
13.
Nano Lett ; 24(15): 4625-4632, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38568748

Transport probes the motion of quasi-particles in response to external excitations. Apart from the well-known electric and thermoelectric transport, acoustoelectric transport induced by traveling acoustic waves has rarely been explored. Here, by adopting hybrid nanodevices integrated with piezoelectric substrates, we establish a simple design of acoustoelectric transport with gate tunability. We fabricate dual-gated acoustoelectric devices based on hBN-encapsulated graphene on LiNbO3. Longitudinal and transverse acoustoelectric voltages are generated by launching a pulsed surface acoustic wave. The gate dependence of zero-field longitudinal acoustoelectric signal presents strikingly similar profiles to that of Hall resistivity, providing a valid approach for extracting carrier density without magnetic field. In magnetic fields, acoustoelectric quantum oscillations appear due to Landau quantization, which are more robust and pronounced than Shubnikov-de Haas oscillations. Our work demonstrates a feasible acoustoelectric setup with gate tunability, which can be extended to the broad scope of various van der Waals materials.

14.
Med Oncol ; 41(6): 131, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683455

Colorectal cancer (CRC) is a prevalent and aggressive malignancy with high mortality rates and significant risks to human well-being. Population-wide screening for tumor suppressor genes and oncogenes shows promise for reducing the incidence and fatality of CRC. Recent studies have suggested that NLRX1, an innate immunity suppressor, may play a role in regulating chronic inflammation and tumorigenesis. However, further investigation is needed to understand the specific role of NLRX1 in CRC. To evaluate the impact of NLRX1 on migration, invasion, and metastasis, two human colon cancer cell lines were studied in vitro. Additionally, a knockout mouse tumor-bearing model was used to validate the inhibitory effect of NLRX1 on tumor emergence and progression. The Seahorse XF96 technology was employed to assess mitochondrial function and glycolysis in colorectal cancer cells overexpressing NLRX1. Moreover, public databases were consulted to analyze gene and protein expression levels of NLRX1. Finally, the results were validated using a series of CRC patient samples. Our findings demonstrate that downregulation of NLRX1 enhances proliferation, colony formation, and tumor-forming capacity in HCT116 and LoVo cells. Conversely, overexpression of NLRX1 negatively impacts basal respiration and mitochondrial ATP-linked respiration in both cell lines, resulting in a notable decrease in maximal respiration during the standard mitochondrial stress test. Furthermore, analysis of data from the TCGA database reveals a significant reduction in NLRX1 expression in colon and rectal cancer tissues compared to normal tissues. This result was validated using clinical samples, where immunohistochemistry staining and western blotting demonstrated a notable reduction in NLRX1 protein levels in CRC compared to adjacent normal tissues. The decreased expression of NLRX1 may serve as a significant prognostic indicator and diagnostic biomarker for CRC patients.


Colorectal Neoplasms , Disease Progression , Mitochondria , Mitochondrial Proteins , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Animals , Mitochondria/metabolism , Mitochondria/pathology , Mice , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Cell Line, Tumor , Mice, Knockout , Cell Proliferation , HCT116 Cells , Cell Movement
15.
Article En | MEDLINE | ID: mdl-38646789

The influence of SGLT-1 on perivascular preadipocytes (PVPACs) and vascular remodeling is not well understood. This study aimed to elucidate the role and mechanism of SGLT-1-mediated PVPACs bioactivity. PVPACs were cultured in vitro and applied ex vivo to the carotid arteries of mice using a lentivirus-based thermosensitive in situ gel (TISG). The groups were treated with Lv-SGLT1 (lentiviral vector, overexpression), Lv-siSGLT1 (RNA interference, knockdown), or specific signaling pathway inhibitors. Assays were conducted to assess changes in cell proliferation, apoptosis, glucose uptake, adipogenic differentiation, and vascular remodeling in the PVPACs. Protein expression was analyzed by western blotting, immunocytochemistry, and/or immunohistochemistry. The methyl thiazolyl tetrazolium (MTT) assay and Hoechst 33342 staining indicated that SGLT-1 overexpression significantly promoted PVPACs proliferation and inhibited apoptosis in vitro. Conversely, SGLT-1 knockdown exerted the opposite effect. Oil Red O staining revealed that SGLT-1 overexpression facilitated adipogenic differentiation, while its inhibition mitigated these effects. 3H-labeled glucose uptake experiments demonstrated that SGLT-1 overexpression enhanced glucose uptake by PVPACs, whereas RNA interference-mediated SGLT-1 inhibition had no significant effect on glucose uptake. Moreover, RT-qPCR, western blotting, and immunofluorescence analyses revealed that SGLT-1 overexpression upregulated FABP4 and VEGF-A levels and activated the Akt/mTOR/p70S6K signaling pathway, whereas SGLT-1 knockdown produced the opposite effects. In vivo studies corroborated these findings and indicated that SGLT-1 overexpression facilitated carotid artery remodeling. Our study demonstrates that SGLT-1 activation of the Akt/mTOR/p70S6K signaling pathway promotes PVPACs proliferation, adipogenesis, glucose uptake, glucolipid metabolism, and vascular remodeling.

16.
Eur J Obstet Gynecol Reprod Biol ; 297: 170-175, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663180

AIM: To develop a new algorithm for the detection of high-grade serous ovarian cancer (HGSOC). METHODS: Patients diagnosed with HGSOC, borderline ovarian tumours (BOTs) or benign ovarian masses (BOMs) were enrolled between February 2019 and December 2020. Patients with BOTs or BOMs were grouped as non-HGSOC. The cases were divided randomly into a training cohort (two-thirds of cases) and a validation cohort (one-third of cases). Logistic regression was used to find risk factors for HGSOC and to create a new algorithm in the training cohort. Receiver operating characteristic curves were used to compare the diagnostic value of tumour biomarkers. Sensitivity and specificity of tumour markers and the new algorithm were calculated in the training cohort and validation cohort. RESULTS: This study found significant differences in age; BRCA1/2 mutation status; CA125, CA724 and HE4 levels; and Risk of Ovarian Malignancy Algorithm score between the two groups.Logistic regression analysis showed that CA125 and BRCA1/2 were risk factors for HGSOC. A new algorithm combining CA125 and BRCA1/2 increased the specificity of CA125 for diagnosis of HGSOC. The new algorithm had sensitivity of 81.08% and specificity of 93.10% in the training cohort. CONCLUSION: The new algorithm using CA125 and BRCA1/2 helped to distinguish between patients with HGSOC and patients with non-HGSOC.


Algorithms , Biomarkers, Tumor , CA-125 Antigen , Ovarian Neoplasms , WAP Four-Disulfide Core Domain Protein 2 , Humans , Female , CA-125 Antigen/blood , Ovarian Neoplasms/blood , Ovarian Neoplasms/diagnosis , WAP Four-Disulfide Core Domain Protein 2/analysis , Middle Aged , Adult , Biomarkers, Tumor/blood , Antigens, Tumor-Associated, Carbohydrate/blood , Cystadenocarcinoma, Serous/blood , Cystadenocarcinoma, Serous/diagnosis , Aged , Sensitivity and Specificity , Risk Factors , Membrane Proteins/blood
17.
Sensors (Basel) ; 24(6)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38544067

Perception plays a crucial role in ensuring the safety and reliability of autonomous driving systems. However, the recognition and localization of small objects in complex scenarios still pose challenges. In this paper, we propose a point cloud object detection method based on dynamic sparse voxelization to enhance the detection performance of small objects. This method employs a specialized point cloud encoding network to learn and generate pseudo-images from point cloud features. The feature extraction part uses sliding windows and transformer-based methods. Furthermore, multi-scale feature fusion is performed to enhance the granularity of small object information. In this experiment, the term "small object" refers to objects such as cyclists and pedestrians, which have fewer pixels compared to vehicles with more pixels, as well as objects of poorer quality in terms of detection. The experimental results demonstrate that, compared to the PointPillars algorithm and other related algorithms on the KITTI public dataset, the proposed algorithm exhibits improved detection accuracy for cyclist and pedestrian target objects. In particular, there is notable improvement in the detection accuracy of objects in the moderate and hard quality categories, with an overall average increase in accuracy of about 5%.

18.
Cancer Med ; 13(7): e7137, 2024 Apr.
Article En | MEDLINE | ID: mdl-38545846

INTRODUCTION: Acral melanoma (AM) is the most common subtype of malignant melanoma in China, with a very poor prognosis. Despite the frequent reporting of trauma events in AM cases, the precise etiology of AM remains elusive. METHODS: A retrospective analysis was conducted on a cohort of 303 AM patients at Nanjing Drum Tower Hospital. The patients were categorized into four distinct groups based on different patterns of disease onset: trauma type (Type 1), pigmented nevus type (Type 2), pigmented nevi with trauma (Type 3), and pigmented nevi with natural ulceration (Type 4). Differences in clinicopathological features, genetic alterations, and tumor immune microenvironment (TIME) were analyzed. RESULTS: Traumatic events accounted for a large proportion of AM cases. Among these categories, Type 1 patients displayed the least favorable pathological traits and an immunosuppressive TIME. Common copy number variations (CNVs) were observed in CCND1, RB1, FGF19, and IL7R, while CNVs in CDK4 and TERT occurred less frequently in patients with a history of trauma (Type 1 and Type 3). Type 2 patients exhibited the most favorable pathological characteristics and genetic profiles, and demonstrated the lowest incidence of CCDN1 and RB1 CNVs but had the highest CDK4 CNVs. In contrast, the pathological behavior of Type 3 and Type 4 patients was in between Type 1 and Type 2. And patients in Type 3 and Type 4 displayed a more favorable overall microenvironment. CONCLUSION: This study provides a clinical classification of Chinese AM based on diverse clinical onset characteristics and highlights the important role of trauma in AM. These findings may help to guide the diagnosis, treatment, and prognosis of AM patients. Further investigations are imperative to elucidate the underlying mechanisms governing the association between trauma and AM.


Melanoma , Nevus, Pigmented , Skin Neoplasms , Humans , Melanoma/pathology , Retrospective Studies , DNA Copy Number Variations , Skin Neoplasms/epidemiology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Nevus, Pigmented/pathology , Tumor Microenvironment/genetics
19.
Genes Dis ; 11(4): 101066, 2024 Jul.
Article En | MEDLINE | ID: mdl-38550714

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has decreased the efficacy of SARS-CoV-2 vaccines in containing coronavirus disease 2019 (COVID-19) over time, and booster vaccination strategies are urgently necessitated to achieve sufficient protection. Intranasal immunization can improve mucosal immunity, offering protection against the infection and sustaining the spread of SARS-CoV-2. In this study, an intranasal booster of the RBD-HR vaccine after two doses of the mRNA vaccine significantly increased the levels of specific binding antibodies in serum, nasal lavage fluid, and bronchoalveolar lavage fluid compared with only two doses of mRNA vaccine. After intranasal boosting with the RBD-HR vaccine, the levels of serum neutralizing antibodies against prototype and variant strains of SARS-CoV-2 pseudoviruses were markedly higher than those in mice receiving mRNA vaccine alone, and intranasal boosting with the RBD-HR vaccine also inhibited the binding of RBD to hACE2 receptors. Furthermore, the heterologous intranasal immunization regimen promoted extensive memory T cell responses and activated CD103+ dendritic cells in the respiratory mucosa, and potently enhanced the formation of T follicular helper cells and germinal center B cells in vital immune organs, including mediastinal lymph nodes, inguinal lymph nodes, and spleen. Collectively, these data infer that heterologous intranasal boosting with the RBD-HR vaccine elicited broad protective immunity against SARS-CoV-2 both locally and systemically.

20.
Adv Healthc Mater ; : e2304087, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38531346

Volumetric muscle loss (VML) is a severe form of muscle trauma that exceeds the regenerative capacity of skeletal muscle tissue, leading to substantial functional impairment. The abnormal immune response and excessive reactive oxygen species (ROS) accumulation hinder muscle regeneration following VML. Here, an interfacial cross-linked hydrogel-poly(ε-caprolactone) nanofiber composite, that incorporates both biophysical and biochemical cues to modulate the immune and ROS microenvironment for enhanced VML repair, is engineered. The interfacial cross-linking is achieved through a Michael addition between catechol and thiol groups. The resultant composite exhibits enhanced mechanical strength without sacrificing porosity. Moreover, it mitigates oxidative stress and promotes macrophage polarization toward a pro-regenerative phenotype, both in vitro and in a mouse VML model. 4 weeks post-implantation, mice implanted with the composite show improved grip strength and walking performance, along with increased muscle fiber diameter, enhanced angiogenesis, and more nerve innervation compared to control mice. Collectively, these results suggest that the interfacial cross-linked nanofiber-hydrogel composite could serve as a cell-free and drug-free strategy for augmenting muscle regeneration by modulating the oxidative stress and immune microenvironment at the VML site.

...