Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 226
1.
Cell Death Differ ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654072

Cell plasticity has been found to play a critical role in tumor progression and therapy resistance. However, our understanding of the characteristics and markers of plastic cellular states during cancer cell lineage transition remains limited. In this study, multi-omics analyses show that prostate cancer cells undergo an intermediate state marked by Zeb1 expression with epithelial-mesenchymal transition (EMT), stemness, and neuroendocrine features during the development of neuroendocrine prostate cancer (NEPC). Organoid-formation assays and in vivo lineage tracing experiments demonstrate that Zeb1+ epithelioid cells are putative cells of origin for NEPC. Mechanistically, Zeb1 transcriptionally regulates the expression of several key glycolytic enzymes, thereby predisposing tumor cells to utilize glycolysis for energy metabolism. During this process, lactate accumulation-mediated histone lactylation enhances chromatin accessibility and cellular plasticity including induction of neuro-gene expression, which promotes NEPC development. Collectively, Zeb1-driven metabolic rewiring enables the epigenetic reprogramming of prostate cancer cells to license the adeno-to-neuroendocrine lineage transition.

2.
Chin J Traumatol ; 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38631945

PURPOSE: The toughest challenge in pedestrian traffic accident identification lies in ascertaining injury manners. This study aimed to systematically simulate and parameterize 3 types of craniocerebral injury including impact injury, fall injury, and run-over injury, to compare the injury response outcomes of different injury manners. METHODS: Based on the Total Human Model for Safety (THUMS) and its enhanced human model THUMS-hollow structures, a total of 84 simulations with 3 injury manners, different loading directions, and loading velocities was conducted. Von Mises stress, intracranial pressure, maximum principal strain, cumulative strain damage measure, shear stress, and cranial strain were employed to analyze the injury response of all areas of the brain. To examine the association between injury conditions and injury consequences, correlation analysis, principal component analysis, linear regression, and stepwise linear regression were utilized. RESULTS: There is a significant correlation observed between each criterion of skull and brain injury (p < 0.01 in all Pearson correlation analysis results). A 2-phase increase of cranio-cerebral stress and strain as impact speed increases. In high-speed impact (> 40 km/h), the Von Mises stress on the skull was with a high possibility exceed the threshold for skull fracture (100 MPa). When falling and making temporal and occipital contact with the ground, the opposite side of the impacted area experiences higher frequency stress concentration than contact at other conditions. Run-over injuries tend to have a more comprehensive craniocerebral injury, with greater overall deformation due to more adequate kinetic energy conduction. The mean value of maximum principal strain of brain and Von Mises stress of cranium at run-over condition are 1.39 and 403.8 MPa, while they were 1.31, 94.11 MPa and 0.64, 120.5 MPa for the impact and fall conditions, respectively. The impact velocity also plays a significant role in craniocerebral injury in impact and fall loading conditions (the p of all F test < 0.05). A regression equation of the craniocerebral injury manners in pedestrian accidents was established. CONCLUSION: The study distinguished the craniocerebral injuries caused in different manners, elucidated the biomechanical mechanisms of craniocerebral injury, and provided a biomechanical foundation for the identification of craniocerebral injury in legal contexts.

3.
Angew Chem Int Ed Engl ; 63(22): e202404015, 2024 May 27.
Article En | MEDLINE | ID: mdl-38530039

Single atomic catalysts (SACs) offer a superior platform for studying the structure-activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well-defined and novel site configuration owing to the uncertainty of functional framework-derived SACs through calcination. Herein, a novel Bi-N2O2 site supported on the (1 1 0) plane of hydrogen-bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1-HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm-2. And, Bi1-HOF exhibits a long-term stability of over 30 h under a successive potential-step test with a current density of 100-400 mA cm-2. Density function theory (DFT) calculations illustrate that the novel Bi-N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M-N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure-activity relationships during CO2RR.

4.
Heliyon ; 10(2): e24851, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38312592

Eucommia ulmoides Oliv. is an ancient and precious plant that has been used as medicine in China for more than 2000 years. Because its bark, leaves, seeds, and male flowers can be used in medicine, it plays an important role in medicine, food, chemical industry, and other fields, so it is also called "plant gold". 246 compounds have been isolated from E. ulmoides, which endow E. ulmoides with many unique pharmacological effects and make it wide to study in the fields of osteoporosis, hypertension, liver protection, and so on. Besides, E. ulmoides also has significant medicinal effects on anti-inflammatory, antioxidant, immunomodulation, and neuroprotection, and is often used in clinical compound medicines of traditional Chinese medicine. In addition to updating its ethnobotany, phytochemistry, pharmacology, and toxicology information, the economic botany of leaves, seeds, and male flowers was also introduced. It hopes hoping to fully understand this economically important Chinese medicine and provide a scientific basis for further development and utilization of E. ulmoides.

5.
Adv Mater ; 36(21): e2312117, 2024 May.
Article En | MEDLINE | ID: mdl-38377528

Highly active single-atom electrocatalysts for the oxygen reduction reaction are crucial for improving the energy conversion efficiency, but they suffer from a limited choice of metal centers and unsatisfactory stabilities. Here, this work reports that optimization of the binding energies for reaction intermediates by tuning the d-orbital hybridization with axial groups converts inactive subgroup-IVB (Ti, Zr, Hf) moieties (MN4) into active motifs (MN4O), as confirmed with theoretical calculations. The competition between metal-ligand covalency and metal-intermediate covalency affects the d-p orbital hybridization between the metal site and the intermediates, converting the metal centers into active sites. Subsequently, dispersed single-atom M sites coordinated by nitrogen/oxygen groups have been prepared on graphene (s-M-N/O-C) catalysts on a large-scale with high-energy milling and pyrolysis. Impressively, the s-Hf-N/O-C catalyst with 5.08 wt% Hf exhibits a half-wave potential of 0.920 V and encouraging performance in a zinc-air battery with an extraordinary cycling life of over 1600 h and a large peak power-density of 256.9 mW cm-2. This work provides promising single-atom electrocatalysts and principles for preparing other catalysts for the oxygen reduction reaction.

6.
Int J Mol Sci ; 25(1)2024 Jan 01.
Article En | MEDLINE | ID: mdl-38203732

Despite Bacillus species having been extensively utilized in the food industry and biocontrol as part of probiotic preparations, limited knowledge exists regarding their impact on intestinal disorders. In this study, we investigated the effect of Bacillus licheniformis ZW3 (ZW3), a potential probiotic isolated from camel feces, on dextran sulfate sodium (DSS)-induced colitis. The results showed ZW3 partially mitigated body weight loss, disease activity index (DAI), colon shortening, and suppressed immune response in colitis mice, as evidenced by the reduction in the levels of the inflammatory markers IL-1ß, TNF-α, and IL-6 (p < 0.05). ZW3 was found to ameliorate DSS-induced dysfunction of the colonic barrier by enhancing mucin 2 (MUC2), zonula occluden-1 (ZO-1), and occludin. Furthermore, enriched beneficial bacteria Lachnospiraceae_NK4A136_group and decreased harmful bacteria Escherichia-Shigella revealed that ZW3 improved the imbalanced gut microbiota. Abnormally elevated uric acid levels in colitis were further normalized upon ZW3 supplementation. Overall, this study emphasized the protective effects of ZW3 in colitis mice as well as some potential applications in the management of inflammation-related diseases.


Bacillus licheniformis , Bacillus , Colitis , Probiotics , Animals , Mice , Colitis/chemically induced , Colitis/therapy , Camelus , Homeostasis , Probiotics/pharmacology , Probiotics/therapeutic use
7.
J Hazard Mater ; 465: 133411, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38181596

Excessive consumption of fluoride can cause skeletal fluorosis. Mitophagy has been identified as a novel target for bone disorders. Meanwhile, calcium supplementation has shown great potential for mitigating fluoride-related bone damage. Hence, this study aimed to elucidate the association between mitophagy and skeletal fluorosis and the precise mechanisms through which calcium alleviates these injuries. A 100 mg/L sodium fluoride (NaF) exposure model in Parkin knockout (Parkin-/-) mice and a 100 mg/L NaF exposure mouse model with 1% calcium carbonate (CaCO3) intervention were established in the current study. Fluoride exposure caused the impairment of mitochondria and activation of PTEN-induced putative kinase1 (PINK1)/E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy and mitochondrial apoptosis in the bones, which were restored after blocking Parkin. Additionally, the intervention model showed fluoride-exposed mice exhibited abnormal bone trabecula and mechanical properties. Still, these bone injuries could be effectively attenuated by adding 1% calcium to their diet, which reversed fluoride-activated mitophagy and apoptosis. To summarize, fluoride can activate bone mitophagy through the PINK1/Parkin pathway and mitochondrial apoptosis. Parkin-/- and 1% calcium provide protection against fluoride-induced bone damage. Notably, this study provides theoretical bases for the prevention and therapy of animal and human health and safety caused by environmental fluoride contamination.


Fluorides , Mitophagy , Humans , Mice , Animals , Fluorides/pharmacology , Calcium/metabolism , Protein Kinases/metabolism , Protein Kinases/pharmacology , Mitochondria , Ubiquitin-Protein Ligases , Apoptosis , Dietary Supplements
8.
Adv Mater ; 36(11): e2304942, 2024 Mar.
Article En | MEDLINE | ID: mdl-37436944

Sodium (Na) batteries are being considered as prospective candidates for the next generation of secondary batteries in contrast to lithium-based batteries, due to their high raw-material abundance, low cost, and sustainability. However, the unfavorable growth of Na-metal deposition and severe interfacial reactions have prevented their large-scale applications. Here, a vacuum filtration strategy, through amyloid-fibril-modified glass-fiber separators, is proposed to address these issues. The modified symmetric cell can be cycled for 1800 h, surpassing the performance of previously reported Na-based electrodes under an ester-based electrolyte. Moreover, the Na/Na3 V2 (PO4 )3 full cell with a sodiophilic amyloid-fibril-modified separator exhibits a capacity retention of 87.13% even after 1000 cycles. Both the experimental and the theoretical results show that the sodiophilic amyloid fibril homogenizes the electric field and Na-ion concentration, fundamentally inhibiting dendrite formation. Simultaneously, the glutamine amino acids in the amyloid fibril have the highest adsorption energy for Na, resulting in the formation of a stable Na3 N- and NaNx Oy -rich solid-electrolyte-interface film on the anode during cycling. This work provides not only a possible pathway to solve the dendrite problem in metal batteries using environmentally friendly biomacromolecular materials, but also a new direction for expanding biomaterial applications.

9.
J Immunol ; 212(1): 57-68, 2024 01 01.
Article En | MEDLINE | ID: mdl-38019127

Salmonella enterica serovar Typhimurium (S. Tm) causes severe foodborne diseases. Interestingly, gut microbial tryptophan (Trp) metabolism plays a pivotal role in such infections by a yet unknown mechanism. This study aimed to explore the impact of Trp metabolism on S. Tm infection and the possible mechanisms involved. S. Tm-infected C57BL6/J mice were used to demonstrate the therapeutic benefits of the Bacillus velezensis JT3-1 (B. velezensis/JT3-1) strain or its cell-free supernatant in enhancing Trp metabolism. Targeted Trp metabolomic analyses indicated the predominance of indole-3-lactic acid (ILA), an indole derivative and ligand for aryl hydrocarbon receptor (AHR). Based on the 16S amplicon sequencing and correlation analysis of metabolites, we found that B. velezensis supported the relative abundance of Lactobacillus and Ligilactobacillus in mouse gut and showed positive correlations with ILA levels. Moreover, AHR and its downstream genes (especially IL-22) significantly increased in mouse colons after B. velezensis or cell-free supernatant treatment, suggesting the importance of AHR pathway activation. In addition, ILA was found to stimulate primary mouse macrophages to secrete IL-22, which was antagonized by CH-223191. Furthermore, ILA could protect mice from S. Tm infection by increasing IL-22 in Ahr+/- mice, but not in Ahr-/- mice. Finally, Trp-rich feeding showed amelioration of S. Tm infection in mice, and the effect depended on gut microbiota. Taken together, these results suggest that B. velezensis-associated ILA contributes to protecting mice against S. Tm infection by activating the AHR/IL-22 pathway. This study provides insights into the involvement of microbiota-derived Trp catabolites in protecting against Salmonella infection.


Gastrointestinal Microbiome , Microbiota , Salmonella Infections , Animals , Mice , Salmonella typhimurium , Tryptophan/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
10.
Int J Parasitol ; 54(3-4): 157-170, 2024 Mar.
Article En | MEDLINE | ID: mdl-37858900

Hyalomma anatolicum is an obligatory blood-sucking ectoparasite and contributes to the transmission of Crimean-Congo haemorrhagic fever (CCHF) virus, Theileria spp. and Babesia spp. Progress in exploring the adaptive strategy of this ectoparasite and developing tools to fight it has been hindered by the lack of a complete genome. Herein, we assembled the genome using diverse sources of data from multiple sequencing platforms and annotated the 1.96 Gb genome of Hy. anatolicum. Comparative genome analyses and the predicted protein encoding genes reveal unique facets of this genome, including gene family expansion associated with blood feeding and digestion, multi-gene families involved in detoxification, a great number of neuropeptides and corresponding receptors regulating tick growth, development, and reproduction, and glutathione S-transferase genes playing roles in insecticide resistance and detoxification of multiple xenobiotic factors. This high quality reference genome provides fundamental data for obtaining insights into a variety of aspects of tick biology and developing novel strategies to fight notorious tick vectors of human and animal pathogens.


Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Ixodidae , Ticks , Animals , Humans , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Ixodidae/genetics , Genomics
11.
Article Zh | WPRIM | ID: wpr-1016554

@#The standardized workflow of computer-aided static guided implant surgery includes preoperative examination, data acquisition, guide design, guide fabrication and surgery. Errors may occur at each step, leading to irreversible cumulative effects and thus impacting the accuracy of implant placement. However, clinicians tend to focus on factors causing errors in surgical operations, ignoring the possibility of irreversible errors in nonstandard guided surgery. Based on the clinical practice of domestic experts and research progress at home and abroad, this paper summarizes the sources of errors in guided implant surgery from the perspectives of preoperative inspection, data collection, guide designing and manufacturing and describes strategies to resolve errors so as to gain expert consensus. Consensus recommendation: 1. Preoperative considerations: the appropriate implant guide type should be selected according to the patient's oral condition before surgery, and a retaining screw-assisted support guide should be selected if necessary. 2. Data acquisition should be standardized as much as possible, including beam CT and extraoral scanning. CBCT performed with the patient’s head fixed and with a small field of view is recommended. For patients with metal prostheses inside the mouth, a registration marker guide should be used, and the ambient temperature and light of the external oral scanner should be reasonably controlled. 3. Optimization of computer-aided design: it is recommended to select a handle-guided planting system and a closed metal sleeve and to register images by overlapping markers. Properly designing the retaining screws, extending the support structure of the guide plate and increasing the length of the guide section are methods to feasibly reduce the incidence of surgical errors. 4. Improving computer-aided production: it is also crucial to set the best printing parameters according to different printing technologies and to choose the most appropriate postprocessing procedures.

12.
J Clin Invest ; 133(24)2023 Dec 15.
Article En | MEDLINE | ID: mdl-38099497

Cell lineage plasticity is one of the major causes for the failure of targeted therapies in various cancers. However, the driver and actionable drug targets in promoting cancer cell lineage plasticity are scarcely identified. Here, we found that a G protein-coupled receptor, ADORA2A, is specifically upregulated during neuroendocrine differentiation, a common form of lineage plasticity in prostate cancer and lung cancer following targeted therapies. Activation of the ADORA2A signaling rewires the proline metabolism via an ERK/MYC/PYCR cascade. Increased proline synthesis promotes deacetylases SIRT6/7-mediated deacetylation of histone H3 at lysine 27 (H3K27), and thereby biases a global transcriptional output toward a neuroendocrine lineage profile. Ablation of Adora2a in genetically engineered mouse models inhibits the development and progression of neuroendocrine prostate and lung cancers, and, intriguingly, prevents the adenocarcinoma-to-neuroendocrine phenotypic transition. Importantly, pharmacological blockade of ADORA2A profoundly represses neuroendocrine prostate and lung cancer growth in vivo. Therefore, we believe that ADORA2A can be used as a promising therapeutic target to govern the epigenetic reprogramming in neuroendocrine malignancies.


Lung Neoplasms , Prostatic Neoplasms , Sirtuins , Animals , Humans , Male , Mice , Cell Line, Tumor , Epigenesis, Genetic , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proline/metabolism , Proline/therapeutic use , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Sirtuins/metabolism
13.
J Funct Biomater ; 14(11)2023 Oct 30.
Article En | MEDLINE | ID: mdl-37998104

The utilization of bioresorbable synthetic bone substitutes with immunomodulatory properties has gained significant attention in dental clinical applications for the absorption of alveolar bone induced by orthodontic treatment. In this study, we developed two distinct materials: a conventional hydroxyapatite (HA) bone powder comprised of hydroxyapatite particles and nanoHA embedded within a poly(caprolactone-co-lactide) (PCLLA) elastomeric matrix. We assessed the physicochemical characteristics of the bone substitute, specifically focusing on its composition and the controlled release of ions. Our findings show that PCLLA-nanoHA has deformable properties under 40 N, and a significant release of Ca and P elements was noted after 7 days in aqueous settings. Moreover, at the protein and gene expression levels, PCLLA-nanoHA enhances the capacity of macrophages to polarize towards an M2 phenotype in vitro. In vivo, PCLLA-nanoHA exhibits comparable effects to standard HA bone powder in terms of promoting alveolar bone regeneration. Extensive investigations reveal that PCLLA-nanoHA surpasses the commonly employed HA bone powder in stimulating bone tissue repair in diabetic mice. We have identified that PCLLA-nanoHA regulates macrophage M2 polarization by activating the PI3K/AKT and peroxisome proliferator-activated receptor gamma (PPAR) signaling pathways, thereby facilitating a favorable local immune microenvironment conducive to bone repair and regeneration. Our findings suggest that PCLLA-nanoHA presents itself as a promising bioresorbable bone substitute with properties that promote macrophage M2 polarization, particularly in the context of regulating the local microenvironment of alveolar bone in diabetic mice, potentially facilitating bone tissue regeneration.

14.
Mater Today Bio ; 23: 100859, 2023 Dec.
Article En | MEDLINE | ID: mdl-38033368

Background: Reducing Ca2+ content in the sarcoplasmic reticulum (SR) through ryanodine receptors (RyRs) by calcin is a potential intervention strategy for the SR Ca2+ overload triggered by ß-adrenergic stress in acute heart diseases. Methods: OpiCal-PEG-PLGA nanomicelles were prepared by thin film dispersion, of which the antagonistic effects were observed using an acute heart failure model induced by epinephrine and caffeine in mice. In addition, cardiac targeting, self-stability as well as biotoxicity were determined. Results: The synthesized OpiCa1-PEG-PLGA nanomicelles were elliptical with a particle size of 72.26 nm, a PDI value of 0.3, and a molecular weight of 10.39 kDa. The nanomicelles showed a significant antagonistic effect with 100 % survival rate to the death induced by epinephrine and caffeine, which was supported by echocardiography with significantly recovered heart rate, ejection fraction and left ventricular fractional shortening rate. The FITC labeled nanomicelles had a strong membrance penetrating capacity within 2 h and cardiac targeting within 12 h that was further confirmed by immunohistochemistry with a self-prepared OpiCa1 polyclonal antibody. Meanwhile, the nanomicelles can keep better stability and dispersibility in vitro at 4 °C rather than 20 °C or 37 °C, while maintain a low but stable plasma OpiCa1 concentration in vivo within 72 h. Finally, no obvious biotoxicities were observed by CCK-8, flow cytometry, H&E staining and blood biochemical examinations. Conclusion: Our study also provide a novel nanodelivery pathway for targeting RyRs and antagonizing the SR Ca2+ disordered heart diseases by actively releasing SR Ca2+ through RyRs with calcin.

15.
J Surg Case Rep ; 2023(11): rjad610, 2023 Nov.
Article En | MEDLINE | ID: mdl-37965538

Patients with hepatocellular carcinoma at high risk of recurrence after hepatic resection or local ablation often undergo adjuvant immunotherapy with immune checkpoint inhibitors for 1 year in randomized controlled trials, but the appropriateness of this duration is controversial, especially given the risk of adverse events. Here we report the case of a 52-year-old Chinese man with initially unresectable multinodular recurrent hepatocellular carcinoma who underwent two cycles of transarterial chemoembolization, followed by hepatic resection and 24 months of adjuvant therapy with the PD-1 inhibitor tislelizumab. The patient achieved a recurrence-free survival time of 24 months, but he experienced elevated alpha fetoprotein, Grade 2 hypothyroidism and pruritus while on adjuvant therapy. This case highlights the need to optimize the duration of adjuvant immunotherapy after curative treatment for hepatocellular carcinoma in order to minimize risk of not only recurrence but also adverse events.

16.
Sci Rep ; 13(1): 19966, 2023 11 15.
Article En | MEDLINE | ID: mdl-37968306

Forest soils are important components of forest ecosystems, and soil quality assessment as a decision-making tool to understand forest soil quality and maintain soil productivity is essential. Various methods of soil quality assessment have been developed, which have occasionally generated inconsistent assessment results between soil types. We assessed the soil quality of five communities (herb, shrub, Quercus acutissima, Pinus thunbergii, and Q. acutissima-P. thunbergii mixed plantation) using two common methods of dry and barren mountains in the Yimeng Mountain area, China. Sixteen soil physical, chemical and biological properties were analysed. The soil quality index was determined using the established minimum data set based on the selection results of principal component analysis and Pearson analysis. Silt, soil total phosphorus (P), soil total nitrogen (N), L-leucine aminopeptidase, acid phosphatase and vector length were identified as the most representative indicators for the minimum data set. Linear regression analysis showed that the minimum data set can adequately represent the total data set to quantify the impact of different communities on soil quality (P < 0.001). The results of linear and non-linear methods of soil quality assessment showed that the higher soil quality index was Pinus forest (0.59 and 0.54), and the soil quality index of mixed plantation (0.41 and 0.45) was lower, which was similar to the herb community (0.37 and 0.44). Soil quality was mostly affected by soil chemical properties and extracellular enzyme activities of different communities, and the different reasons for the low soil quality of mixed plantations were affected by soil organic carbon (C) and total C. Overall, we demonstrate that the soil quality index based on the minimum data set method could be a useful tool to indicate the soil quality of forest systems. Mixed plantations can improve soil quality by increasing soil C, which is crucial in ecosystem balance.


Ecosystem , Pinus , Soil/chemistry , Carbon/analysis , Forests , China , Nitrogen/analysis
17.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article En | MEDLINE | ID: mdl-37688012

Target detection in high-contrast, multi-object images and movies is challenging. This difficulty results from different areas and objects/people having varying pixel distributions, contrast, and intensity properties. This work introduces a new region-focused feature detection (RFD) method to tackle this problem and improve target detection accuracy. The RFD method divides the input image into several smaller ones so that as much of the image as possible is processed. Each of these zones has its own contrast and intensity attributes computed. Deep recurrent learning is then used to iteratively extract these features using a similarity measure from training inputs corresponding to various regions. The target can be located by combining features from many locations that overlap. The recognized target is compared to the inputs used during training, with the help of contrast and intensity attributes, to increase accuracy. The feature distribution across regions is also used for repeated training of the learning paradigm. This method efficiently lowers false rates during region selection and pattern matching with numerous extraction instances. Therefore, the suggested method provides greater accuracy by singling out distinct regions and filtering out misleading rate-generating features. The accuracy, similarity index, false rate, extraction ratio, processing time, and others are used to assess the effectiveness of the proposed approach. The proposed RFD improves the similarity index by 10.69%, extraction ratio by 9.04%, and precision by 13.27%. The false rate and processing time are reduced by 7.78% and 9.19%, respectively.

18.
Angew Chem Int Ed Engl ; 62(46): e202312644, 2023 Nov 13.
Article En | MEDLINE | ID: mdl-37699862

Developing highly efficient and stable hydrogen production catalysts for electrochemical water splitting (EWS) at industrial current densities remains a great challenge. Herein, we proposed a heterostructure-induced-strategy to optimize the metal-support interaction (MSI) and the EWS activity of Ru-Ni3 N/NiO. Density functional theory (DFT) calculations firstly predicted that the Ni3 N/NiO-heterostructures can improve the structural stability, electronic distributions, and orbital coupling of Ru-Ni3 N/NiO compared to Ru-Ni3 N and Ru-NiO, which accordingly decreases energy barriers and increases the electroactivity for EWS. As a proof-of-concept, the Ru-Ni3 N/NiO catalyst with a 2D Ni3 N/NiO-heterostructures nanosheet array, uniformly dispersed Ru nanoparticles, and strong MSI, was successfully constructed in the experiment, which exhibited excellent HER and OER activity with overpotentials of 190 mV and 385 mV at 1000 mA cm-2 , respectively. Furthermore, the Ru-Ni3 N/NiO-based EWS device can realize an industrial current density (1000 mA cm-2 ) at 1.74 V and 1.80 V under alkaline pure water and seawater conditions, respectively. Additionally, it also achieves a high durability of 1000 h (@ 500 mA cm-2 ) in alkaline pure water.

19.
J Colloid Interface Sci ; 651: 264-272, 2023 Dec.
Article En | MEDLINE | ID: mdl-37542901

Developing new and highly stable efficient photocatalysts is crucial for achieving high performance and selective photocatalytic CO2 conversion. In this paper, we designed a one-dimensional oxygen-deficient blue TiO2(B) (BT) catalyst for improved electron mobility and visible light accessibility. In addition, hexagonal ZnIn2S4 (ZIS) nanosheets with a low bandgap and great visible light accessibility are employed to produce effective heterostructures with BT. The synthesized materials are tested for photocatalytic conversion of CO2 into solar fuels (H2, CO and CH4). The optimized composite yields 71.6 and 10.3 µmol g-1h-1 of CO and CH4, three and ten times greater than ZIS, respectively. When ZIS nanosheets are combined with a one-dimensional oxygen-deficient BT catalyst, improved electron mobility and visible light accessibility are achieved, charge carriers are effectively segregated, and the transfer process is accelerated, resulting in efficient CO2 reduction. The photocatalytic CO2 conversion activity of the constructed BT/ZIS heterostructures is very stable over a 10-day (240-hour) period, and CO and CH4 production rates increase linearly with time; however, as time goes on, the rates of H2 production decrease. Further, a five-time recycling test confirmed this, revealing essentially equal activity and selectivity throughout the experiment. As a result, CO2 to CO and CH4 conversion has high selectivity and longer durability. The band structure of the BT/ZIS composite is determined using Mott-Schottky measurement, diffuse reflectance spectroscopy, and valence band X-ray photoelectron spectroscopy. This research demonstrates a novel approach to investigating effective, stable, and selective photocatalytic CO2 reduction systems for solar-to-chemical energy conversion.

20.
Parasit Vectors ; 16(1): 299, 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37641091

BACKGROUND: Six species of apicomplexan parasites of the genus Babesia, namely B. microti, B. divergens, B. duncani, B. motasi, B. crassa-like and B. venatorum, are considered to be the primary causal agents of human babesiosis in endemic areas. These six species possess variable degrees of virulence for their primary hosts. Therefore, the accurate identification of these species is critical for the adoption of appropriate therapeutic strategies. METHODS: We developed a real-time PCR-high-resolution melting (qPCR-HRM) approach targeting 18S ribosomal RNA gene of five Babesia spp. based on melting temperature (Tm) and genotype confidence percentage values. This approach was then evaluated using 429 blood samples collected from patients with a history of tick bites, 120 DNA samples mixed with plasmids and 80 laboratory-infected animal samples. RESULTS: The sensitivity and specificity of the proposed qPCR-HRM method were 95% and 100%, respectively, and the detection limit was 1-100 copies of the plasmid with the cloned target gene. The detection level depended on the species of Babesia analyzed. The primers designed in this study ensured not only the high interspecific specificity of our proposed method but also a high versatility for different isolates from the same species worldwide. Additionally, the Tm obtained from the prepared plasmid standard is theoretically suitable for identifying isolates of all known sequences of the five Babesia species. CONCLUSIONS: The developed detection method provides a useful tool for the epidemiological investigation of human babesiosis and pre-transfusion screening.


Babesia , Babesiosis , Gastropoda , Animals , Humans , Babesia/genetics , Cloning, Molecular , DNA Primers
...