Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
J Cereb Blood Flow Metab ; : 271678X241251570, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700501

Perivascular spaces (PVSs) as the anatomical basis of the glymphatic system, are increasingly recognized as potential imaging biomarkers of neurological conditions. However, it is not clear whether enlarged PVSs are associated with alcohol-related brain damage (ARBD). We aimed to investigate the effect of long-term alcohol exposure on dyslipidemia and the glymphatic system in ARBD. We found that patients with ARBD exhibited significantly enlargement of PVSs in the frontal cortex and basal ganglia, as well as a notable increased levels of total cholesterol (TC) and triglycerides (TG). The anatomical changes of the glymphatic drainage system mentioned above were positively associated with TC and TG. To further explore whether enlarged PVSs affects the function of the glymphatic system in ARBD, we constructed long alcohol exposure and high fat diet mice models. The mouse model of long alcohol exposure exhibited increased levels of TC and TG, enlarged PVSs, the loss of aquaporin-4 polarity caused by reactive astrocytes and impaired glymphatic drainage function which ultimately caused cognitive deficits, in a similar way as high fat diet leading to impairment in glymphatic drainage. Our study highlights the contribution of dyslipidemia due to long-term alcohol abuse in the impairment of the glymphatic drainage system.

2.
Gut Microbes ; 15(2): 2276296, 2023 Dec.
Article En | MEDLINE | ID: mdl-38010914

Alpha-synuclein (α-syn) pathology is the hallmark of Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) gene is a major-effect risk gene for sporadic PD (sPD). However, what environmental factors may trigger the formation of α-syn pathology in carriers of LRRK2 risk variants are still unknown. Here, we report that a markedly increased abundance of Escherichia coli (E. coli) in the intestinal microbiota was detected in LRRK2 risk variant(R1628P or G2385R) carriers with sPD compared with carriers without sPD. Animal experiments showed that E. coli administration triggered pathological α-syn accumulation in the colon and spread to the brain via the gut-brain axis in Lrrk2 R1628P mice, due to the co-occurrence of Lrrk2 variant-induced inhibition of α-syn autophagic degradation and increased phosphorylation of α-syn caused by curli in E. coli-derived extracellular vesicles. Fecal microbiota transplantation (FMT) effectively ameliorated motor deficits and α-syn pathology in Lrrk2 R1628P mice. Our findings elaborate on the mechanism that E. coli triggers α-syn pathology in Lrrk2 R1628P mice, and highlight a novel gene-environment interaction pattern in LRRK2 risk variants. Even more importantly, the findings reveal the interplay between the specific risk gene and the matched environmental factors triggers the initiation of α-syn pathology in sPD.


Gastrointestinal Microbiome , Parkinson Disease , Mice , Animals , Parkinson Disease/genetics , Parkinson Disease/pathology , Mice, Transgenic , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
3.
Kidney Dis (Basel) ; 9(5): 384-397, 2023 Oct.
Article En | MEDLINE | ID: mdl-37901711

Introduction: This study was designed to explore the associations between impaired cognition in chronic kidney disease (CKD) patients and the dysfunction of the glymphatic system. Method: Data were obtained from 77 CKD patients and 50 age-matched healthy control individuals from the First Affiliated Hospital of Zhengzhou University. CKD patients were stratified into with and without impaired cognitive function. T2-weighted magnetic resonance imaging results were used to assess area ratios for the perivascular space and ventricles in participants, while the Montreal Cognitive Assessment and the Mini-Mental State Examination were employed to measure cognitive function. Correlations between the perivascular space or ventricle area ratios and cognitive impairment were assessed in CKD patients. Results: Significant increases in the burden of enlarged perivascular spaces in the frontal cortex and basal ganglia were observed in CKD patients with cognitive impairment relative to those without such impairment, with a concomitant increase in analyzed ventricle area ratios. Enlarged perivascular spaces in the frontal cortex, basal ganglia and increased area ratios of lateral ventricles and 4th ventricle exhibited relatively high sensitivity and specificity as means of differing between the CKD patients with and without cognitive impairment. Conclusion: These results indicate that the burden of enlarged perivascular spaces in the frontal cortex and basal ganglia and increases in ventricle area ratio values may offer utility as biomarkers that can aid in detection of even mild cognitive decline in individuals with CKD. The dysfunction of the glymphatic system may play a key role in the pathogenesis of CKD-related cognitive impairment.

4.
Sci Total Environ ; 905: 167184, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-37730030

Microplastics (MPs) have been widely found in soils, however, the mechanism of MPs influencing plant growth is still debated and possibly attributed to the soil environment changed by MPs. In this study, 0.0 %, 0.1 %, 0.5 %, 1.0 %, 2.0 %, and 5.0 % (w/w) content of low-density polyethylene MPs (LDPE-MPs) with the particle sizes of 75-2000 µm was used to test how MPs alter the germination and the early growth of lettuce (Lactuca sativa var. ramosa Hort.) in Mollisols under both natural condition and regular incubation condition. Soil temperature (ST), soil moisture (SM) and the ratio of cracks area to surface soil area (CA) and cracks length to surface soil area (CL) were monitored. As well, the dynamics of water and nutrient infiltration reported by our previous publication were combined to analyze the relationship between soil properties and crop growth influenced by MP concentration. The main results showed that: (1) compared with CK (0.0 %), the germination and plant height of lettuce were lowest in treatments with the middle concentration of MPs (0.5 % and 1 %, w/w), but was highest in treatments of high concentration of MPs (5.0 %, w/w) during the whole 14 days of incubation; (2) increasing MP concentration weakened the influence of SM on ST in Mollisols; (3) the average of SM and ST were highest at 5 % of MP concentration, while was lowest at 0.5 % and 1 % of MP concentration from the 2nd to the 9th day; (3) compared with CK and other treatments, the CA and CL were lowest in 1.0 % MP concentration, but were highest in 0.1 % and 5.0 % of MP concentration. This study provides insight that middle, rather than high and low levels of MP concentration, significantly decrease the SM and ST and increase nitrogen leaching which further leads to negative impacts on emergent and early growth of crops in soils with heavy texture (Mollisols).


Germination , Lactuca , Microplastics , Plastics , Temperature , Polyethylene , Soil
5.
Acta Neuropathol ; 145(5): 681-705, 2023 05.
Article En | MEDLINE | ID: mdl-36929019

Cerebral small vessel disease (CSVD) is a prominent cause of ischemic and hemorrhagic stroke and a leading cause of vascular dementia, affecting small penetrating vessels of the brain. Despite current advances in genetic susceptibility studies, challenges remain in defining the causative genes and the underlying pathophysiological mechanisms. Here, we reported that the ARHGEF15 gene was a causal gene linked to autosomal dominant inherited CSVD. We identified one heterozygous nonsynonymous mutation of the ARHGEF15 gene that cosegregated completely in two families with CSVD, and a heterozygous nonsynonymous mutation and a stop-gain mutation in two individuals with sporadic CSVD, respectively. Intriguingly, clinical imaging and pathological findings displayed severe osteoporosis and even osteoporotic fractures in all the ARHGEF15 mutation carriers. In vitro experiments indicated that ARHGEF15 mutations resulted in RhoA/ROCK2 inactivation-induced F-actin cytoskeleton disorganization in vascular smooth muscle cells and endothelial cells and osteoblast dysfunction by inhibiting the Wnt/ß-catenin signaling pathway in osteoblast cells. Furthermore, Arhgef15-e(V368M)1 transgenic mice developed CSVD-like pathological and behavioral phenotypes, accompanied by severe osteoporosis. Taken together, our findings provide strong evidence that loss-of-function mutations of the ARHGEF15 gene cause CSVD accompanied by osteoporotic fracture.


Cerebral Small Vessel Diseases , Osteoporosis , Osteoporotic Fractures , Animals , Mice , Cerebral Small Vessel Diseases/pathology , Endothelial Cells/pathology , Mutation/genetics , Osteoporosis/genetics , Osteoporosis/complications , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/genetics , Osteoporotic Fractures/complications
6.
Sci Total Environ ; 878: 163121, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-37001667

Nowadays, the dynamics of nutrients leaching from the soils and their driving mechanism have been focused on, however, it is still unclear how microplastics (MPs) influence the nutrients' leaching in soils. In this study, five concentrations (w/w, 0.0 %, 0.5 %, 1 %, 2 %, 3 %) and three sizes of MPs of polyethylene (PE) (0.15-0.36 mm, 0.36-0.60 mm and 0.60-1.00 mm) influencing the leaching of NO3--N and water-soluble potassium (WSK) was simulated by a column method in Mollisols, and both the pre-fertilization and post-fertilization were considered. The results showed that, before KNO3 addition, there was a negative power function relationship between the NO3--N concentration and the leaching solution volume/leaching time. The amount and concentration of NO3--N leaching was higher in the early leaching stage. Compared with the CK, PE0.5% significantly reduced the leaching amount of WSK, while increased the leaching amount of NO3--N but not significantly. The leaching amount of WSK decreased with the increasing size of PEMP when the PEMP concentration was the same, while NO3--N was opposite. PE0.60-1.00 increased the leaching amount of NO3--N, while reduced the leaching amount of WSK. After KNO3 addition, compared with CK, PE1% significantly reduced the leaching amount of NO3--N, and PE1% had the lowest leaching amount of WSK. However, when the PEMP concentration in the soil reached a certain threshold (w/w, >1 %), the leaching amount of NO3--N and WSK increased gradually with PEMP increasing. PE0.60-1.00 reduced the leaching amount of NO3--N and WSK most obviously. In general, low concentrations (w/w, <1 %) and large sizes (0.60-1.00 mm) of PEMP promoted NO3--N leaching and inhibited the WSK leaching from the soil before the addition of KNO3, however, they both inhibited the leaching of NO3--N and WSK from the soil after addition of KNO3.

7.
Front Immunol ; 14: 1117726, 2023.
Article En | MEDLINE | ID: mdl-36969214

Introduction: Generalized anxiety disorder (GAD) is one of the most enduring anxiety disorders, being associated with increased systemic inflammation. However, the trigger and mechanisms underlying the activation of inflammatory cytokine responses in GAD remain poorly understood. Materials and methods: We characterized the ear canal microbiome in GAD patients through 16S rRNA gene sequencing and metagenomic sequencing and identified the serum inflammatory markers in GAD patients. Spearman correlations were applied to test the relationship between the microbiota changes and systemic inflammation. Results: Our findings showed the higher microbial diversity, accompanied with the significantly increased abundance of Proteobacteria, and decreased abundance of Firmicutes in the ear canal of GAD participants compared to that of the age- and sex-matched healthy controls (HC). Metagenomic sequencing showed that Pseudomonas aeruginosa were significantly increased at species-level in GAD patients. Furthermore, we observed the relative abundance of Pseudomonas aeruginosa was positively associated with elevated systemic inflammatory markers and the severity of disease, suggesting that these ear canal microbiota alterations might be correlated with GAD by activating the inflammatory response. Conclusions: These findings indicate that microbiota-ear-brain interaction via upregulating inflammatory reaction involve in the development of GAD, as well as suggest that ear canal bacterial communities may be a target for therapeutic intervention.


Cytokines , Microbiota , Humans , RNA, Ribosomal, 16S , Anxiety Disorders/microbiology , Brain , Inflammation
8.
EClinicalMedicine ; 58: 101888, 2023 Apr.
Article En | MEDLINE | ID: mdl-36969340

Background: Faecal microbiota transplantation (FMT) has demonstrated efficacy in treating gastrointestinal (GI) diseases, such as Clostridium difficile infection (CDI) and inflammatory bowel disease (IBD). GI dysfunction is a frequent and occasionally dominating symptom of progressive supranuclear palsy-Richardson's syndrome (PSP-RS). However, it is not known whether FMT has clinical efficacy for PSP-RS. Methods: This 36-week, randomised, placebo-controlled, parallel-group, phase 2 clinical trial was performed at a university tertiary referral hospital in China. From August 15 2021 to December 31 2021, a total of 68 newly diagnosed patients with PSP-RS (male 40 [59%], female 28 [41%]) who had never received any antiparkinsonian medications were enrolled and randomly assigned to receive either healthy donor FMT (n = 34, FMT group) or a mixture of 0.9% saline and food colouring (E150c) as sham transplantation (n = 34, placebo group) through transendoscopic enteral tubing (TET). Two days after oral antibiotics, participants received 1 week of transplantation. After an interval of 4 weeks, retransplantation was performed. Then, the last transplantation was given after another interval of 4 weeks, and the participants were followed up for 24 weeks (week 36). Clinicaltrials.gov identifier: ChiCTR-2100045397. Findings: Among 68 patients who were randomised (mean age, 67.2 (SD 5.1); 40 [59%] were male, 28 [41%] were female), 63 participants completed the trial. Efficacy analyses were performed on the intention-to-treat (ITT) analysis set. At week 16, the mean PSP Rating Scale (PSPRS) scores (the primary outcome) improved from 40.1 (SD 7.6) to 36.9 (SD 5.9) in the FMT group, whereas the scores changed from 40.1 (SD 6.9) to 41.7 (SD 6.2) in the placebo group, for a treatment benefit of 4.3 (95% CI, 3.2-5.4) (P < 0.0001). After 3-cycle intervention, symptoms of constipation, depression, and anxiety (the secondary outcome) improved significantly at week 16 in the FMT group compared with the placebo group, the majority of which were maintained at the 24-week follow-up (week 36). Interpretation: Our findings suggest that, compared with placebo, FMT treatment significantly improved motor and nonmotor symptoms in patients with PSP-RS, as well as reduced intestinal inflammation and enhanced the intestinal barrier by regulating the intestinal microbiota composition. Funding: The National Natural Science Foundation of China (No. 82122022, 82171248, 81873791, and 82230084), Natural Science Foundation of Henan Province for Excellent Young Scholars (no. 202300410357), and Henan Province Young and Middle-Aged Health Science and Technology Innovation Talent Project (YXKC2020033).

9.
J Environ Manage ; 333: 117412, 2023 May 01.
Article En | MEDLINE | ID: mdl-36758402

Plastics production has been increasing over years, while their recycling rate is lower, resulting in huge amounts of microplastics (MP) accumulating in the environment. Although the environmental behaviors of MPs have been focused on in recent years, the migration, distribution and adverse effects of MPs in terrestrial and aquatic environments are still not systematically understood. In this review, based on the newest publications from the core database of the Web of Science, both the migration and distribution of MPs were summarized, as well as MPs transfer in biota and their biological effects were also focused on. Generally, the complicated and numerous pathways of MPs migration lead to their distribution throughout or nearly all environments on a global scale. However, the migration mechanisms of MPs with various sizes, shapes, and colors by physicochemical and biological processes, and the prediction models of MP migration and distribution, are deficient, despite these properties being highly related to MPs migration and bio-safety. Although MPs have already invaded microorganisms, plants, animals, and even human beings, the biological effects still need more study, so far as their sizes and shapes and also their composition and adsorption are concerned. Moreover, based on the highlights and deficiencies of current studies, further studies have also been proposed. This review aims to help people re-evaluate the uncertain behaviors of MPs in various environments, and could be helpful to fully understand their biological effects in different environmental conditions.


Microplastics , Water Pollutants, Chemical , Animals , Humans , Plastics/chemistry , Environmental Monitoring , Water Pollutants, Chemical/analysis , Biota
10.
J Neurol ; 270(4): 2204-2216, 2023 Apr.
Article En | MEDLINE | ID: mdl-36662283

Obstructive sleep apnea (OSA) is highly prevalent but easily undiagnosed and is an independent risk factor for cognitive impairment. However, it remains unclear how OSA is linked to cognitive impairment. In the present study, we found the correlation between morphological changes of perivascular spaces (PVSs) and cognitive impairment in OSA patients. Moreover, we developed a novel set of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) methods to evaluate the fluid dynamics of glymphatic drainage system. We found that the inflow and outflow parameters of the glymphatic drainage system in patients with OSA were obviously changed, indicating impairment of glymphatic drainage due to excessive perfusion accompanied with deficient drainage in OSA patients. Moreover, parameters of the outflow were associated with the degree of cognitive impairment, as well as the hypoxia level. In addition, continuous positive airway pressure (CPAP) enhances performance of the glymphatic drainage system after 1 month treatment in OSA patients. We proposed that ventilation improvement might be a new strategy to ameliorate the impaired drainage of glymphatic drainage system due to OSA-induced chronic intermittent hypoxia, and consequently improved the cognitive decline.


Cognitive Dysfunction , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/diagnostic imaging , Sleep Apnea, Obstructive/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Hypoxia/complications , Risk Factors
11.
Sci Total Environ ; 853: 158681, 2022 Dec 20.
Article En | MEDLINE | ID: mdl-36099948

Plastic pollution in farmland ecosystems has been widely concerned. However, the heterogeneity and driving mechanisms of plastic residue (PR) remain unclear in the farmland surrounded by complex pollution points. In this study, the abundance, mass, and accumulation areas of PR of mulch film (MF) and non-MF (NMF) were investigated in a large area of the vegetable field covered by plastic mulching in a long-term in Northeast China. Geostatistics combined with classical statistics were used to clarify how pollution source and migration factors change the PR heterogeneity in the farmlands. Results indicated that the MF type was only polyethylene (PE) (79.1 % of total PR), while NMF accounted for 20.9 % of total PR. As well, NMF-polypropylene (PP) and NMF-PE accounted for 45.3 % and 39.7 % of total NMF respectively, followed by polystyrene accounting for 7.5 %. In the 0-20 cm soil layer, the spatial autocorrelation of mass and accumulation areas of MF were significantly (p < 0.05) positive, and their spatial pattern tended to cluster. The accumulation areas of MF was predoniment in northwest and southeast near the roadside in all soil layers, while the accumulation areas of NMF was higher near the landfill in the 0-20 cm soil layer. Landfill and residential areas were critical sources of PR for the farmland. Southwest wind and southeast wind were the main driving force of PR migration and their annual migration rates were 23.7 and 19.8 m·year-1. The functional groups on the surface of plastics were different after degradation (including different types and different utilization methods), and PR was oxidized could release or adsorb toxic substances from the soils. Generally, in order to reduce PR pollution, in addition to source control and recycling, farmland tillage should be avoided in the weather when the wind speed is strong, especially near the PR pollution source.


Environmental Pollutants , Plastics , Farms , Agriculture/methods , Ecosystem , Polypropylenes , Polystyrenes , Soil/chemistry , Polyethylene , China
12.
Chemosphere ; 308(Pt 1): 136282, 2022 Dec.
Article En | MEDLINE | ID: mdl-36064013

Mesoplastic (MaP) and macroplastic (MeP) coming from plastic mulching tend to cause negative effects on biota in ecosystems. However, it is still not clear how field management influences the distribution of MeP/MaP in soils. In this study, MeP/MaP was investigated in 0-20 and 20-30 cm soil layers of three vegetable fields (3.4-6.5 ha) after 13 years plastic-mulching in Mollisols of Northeast China under different management methods (MM) of fertilization and tillage frequency. The tillage frequency was MM2 > MM1 > MM3, while the fertilization was MM1 > MM2 > MM3. The results showed that polyethylene (PE), polypropylene (PP), polystyrene, polyvinyl chloride, polyethylene terephthalate (PET), polyamide, melamine-formaldehyde resin and polyether urethane were found in soil, and PE (>83.76%, from plastic mulching) was the predominant type of MeP/MaP. MeP abundance was significantly (p < 0.05) higher in MM1 and MM2 than that in MM3 in the 0-20 cm soil layer. MM1 and MM2 had the highest abundance of MeP/MaP of size <4 cm2 and 4-16 cm2, while MM3 had the highest abundance at the size >16 cm2. The broken index of MeP/MaP was significantly (p < 0.05) lower in MM2 compared with MM1 and MM3 in the 20-30 cm soil layer. Both tillage frequency and fertilization accelerate the breaking of plastics, especially since the influence was stronger from fertilization. Compared with original plastics, the PE, PP and PET's carbonyl index was significantly (p < 0.05) higher in the three MMs. Generally, fertilization and frequent tillage can reduce the physical effects of large-sized plastic debris on crop growth and increases the negative effects of small-sized plastic and new pollutants formed on biota in the agroecosystems. MeP/MaP recycling should be strengthened, and the irrigation and rotation of farmland should be carried out when the wind speed is weak to avoid plastic invasion.


Environmental Pollutants , Microplastics , Agriculture/methods , China , Ecosystem , Formaldehyde , Nylons , Plastics , Polyethylene Terephthalates , Polyethylenes , Polypropylenes , Polystyrenes , Polyvinyl Chloride , Soil
13.
Front Immunol ; 13: 836820, 2022.
Article En | MEDLINE | ID: mdl-35603160

Studies implicate that gut dysbiosis is related with many neurological diseases. However, the potential role of gut dysbiosis in cryptogenic stroke (CS) has not been elucidated yet. In this study, a high prevalence of gastrointestinal (GI) dysfunction and gut inflammation with increased intestinal permeability have been found in CS patients compared with normal controls (NCs). The systemic inflammation in CS patients was also identified by measuring the levels of plasma C-reactive protein (CRP), lipopolysaccharide (LPS), LPS-binding protein (LBP), and white blood cells (WBC) count. Using 16S rRNA sequencing, we found increased alpha diversity, accompanied by a higher abundance of Enterobacteriaceae, Streptococcaceae, and Lactobacillaceae at the family level and Escherichia-Shigella, Streptococcus, Lactobacillus, and Klebsilla at the genus level in the intestinal microbiota of CS patients compared to NCs. Our results showed that the abundance of Klebsilla was positively correlated with the systemic inflammation, the National Institutes of Health Stroke Scale (NIHSS) scores, and the infarct volumes. In conclusion, gut dysbiosis in CS patients was associated with the severity of CS and the systemic inflammation. Maintaining the intestinal homeostasis may be a potential strategy for the treatment of CS.


Gastrointestinal Diseases , Ischemic Stroke , Dysbiosis/metabolism , Humans , Inflammation , RNA, Ribosomal, 16S/genetics , Systemic Inflammatory Response Syndrome , United States
14.
Front Microbiol ; 13: 733804, 2022.
Article En | MEDLINE | ID: mdl-35444620

Degradation of microplastics (MPs) by both physicochemical and biological processes in the natural environment is determined by the enzymes inside the soil, and which was severely influenced by crop growth and straw amendment (SA). However, it is still unclear how crop growth and SA influence degradation of MPs in soils. In this study, both catalase and sucrase were measured, and the stereomicroscope combined with microscopic infrared spectroscopy and scanning electron microscope (SEM) was used to detect the morphology and quantity of low-density polyethylene microplastic (LDPE-MP) and low-density polypropylene microplastic (LDPP-MP), after crop growth (maize and soybean, with and without SA, 1 and 2% MP) in an outdoor pot experiment, in the Mollisols. The results showed that the growth of the crops changed the morphology, functional groups (e.g., methylene, carbonyl), total mass, and abundance ratio of MPs of different sizes. These were possibly caused by enzymes that were significantly influenced by crop types, abundance, and types of MPs in the soils. Maize growth decreased the mass of LDPE-MP and LDPP-MP by 28.7 and 32.7%, respectively, and 2% (w/w) of LDPP-MP addition in soil decreased mass of 9%, which was higher than that in 1% (w/w) LDPP-MP addition in soil. Soybean growth with SA decreased the mass of LDPE-MP and LDPP-MP by 36.6 and 20.7%, respectively, than the control treatment (CK). Compared with CK, both crop growth and SA changed the abundance of MPs of different sizes and decreased the mean size of MPs. The LDPE-MP could be more easily degraded by enzymes in the soils compared to LDPP-MP when the MP size was smaller with surface roughness. Generally, both maize and soybean growth can accelerate MP change in soils, and MP change process was mainly determined by SA, MP types, and the dose effect of MP.

15.
Nat Med ; 27(3): 411-418, 2021 03.
Article En | MEDLINE | ID: mdl-33462448

Animal studies implicate meningeal lymphatic dysfunction in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (PD). However, there is no direct evidence in humans to support this role1-5. In this study, we used dynamic contrast-enhanced magnetic resonance imaging to assess meningeal lymphatic flow in cognitively normal controls and patients with idiopathic PD (iPD) or atypical Parkinsonian (AP) disorders. We found that patients with iPD exhibited significantly reduced flow through the meningeal lymphatic vessels (mLVs) along the superior sagittal sinus and sigmoid sinus, as well as a notable delay in deep cervical lymph node perfusion, compared to patients with AP. There was no significant difference in the size (cross-sectional area) of mLVs in patients with iPD or AP versus controls. In mice injected with α-synuclein (α-syn) preformed fibrils, we showed that the emergence of α-syn pathology was followed by delayed meningeal lymphatic drainage, loss of tight junctions among meningeal lymphatic endothelial cells and increased inflammation of the meninges. Finally, blocking flow through the mLVs in mice treated with α-syn preformed fibrils increased α-syn pathology and exacerbated motor and memory deficits. These results suggest that meningeal lymphatic drainage dysfunction aggravates α-syn pathology and contributes to the progression of PD.


Drainage , Lymphatic Vessels/physiopathology , Meninges/physiopathology , Parkinson Disease/physiopathology , Disease Progression , Humans , Magnetic Resonance Imaging , Meninges/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/therapy , alpha-Synuclein/metabolism
16.
J Hazard Mater ; 409: 124525, 2021 05 05.
Article En | MEDLINE | ID: mdl-33243642

Non-biodegradable microplastics (MPs) pollution long-termly existed in soils, and was only concerned in recent years. In order to better understand MP behavior in soils, the sources, migration, distribution, biological effects, degradation and analytical methodology of non-biodegradable MPs in soils were quantificationally summarized from 170 publications based on Web of Science in 1950-2020. From the publications, we found these studies were mainly carried out in the Asia (60.0%) and Europe (23.3%), and most were on agricultural soils (68.5%). Polyethylene-MP (78.8% of the studies), Polypropylene-MP (78.8%), and Polystyrene-MP (45.5%) were the MPs most frequently found in the soils, with a MP size of 20-5000 µm being most common. Of the soil samples 64.3% contained MP 1000-4000 items kg-1, and the colour frequency ranking is blue (66.7%) > white (61.1%) ≈ red ≈ black. MPs changed the soil microenvironment and microorganism activity, and caused the negative effects on both soil animals (100%) and plants (57.9%). MP degradation was influenced by the photooxidation reactions, microorganism activities, enzymatic effects, environmental conditions, and by the composition, size and morphology of the MPs. An optional analytical method was suggested in this study. At the end of paper, the urgent and important research work in the future was prospected.

17.
Sci Total Environ ; 722: 137950, 2020 Jun 20.
Article En | MEDLINE | ID: mdl-32208279

Agricultural films composed of low-density polyethylene (LDPE) have been widely used in farmland, and LDPE microplastics (LDPE-MPs) produced from LDPE degradation can pollute soils and can exert negative effects on biota. Both nitrogen (N) and phosphorus (P) can alter the activity of soil microorganisms and may alter the LDPE-MP degradation process in soils. In this study, LDPE-MP surface morphology, particle size, abundance and mass in a mollisol were evaluated after the application of a gradient of N and P fertilizer in a laboratory incubation experiment. The results showed the following: (1) LDPE-MP particles became fragmented into smaller debris with a coarse surface after 40 days of incubation, and the effect was more obvious with increased P or N application; (2) high N and P fertilization significantly reduced the abundance of LDPE-MP particles >100 µm by 38.5-50.0% and increased the abundance of LDPE-MP particles <20 µm by 43.2-59.5% after 40 days of incubation; (3) high N and P fertilization significantly increased the mass of LDPE-MP particles <75 µm by 25.5-60.1% and decreased the mass of LDPE-MP particles >150 µm by 32.4-37.5%; (4) the mass of LDPE-MPs decreased with increasing incubation time after N and P fertilization, which could be simulated by exponential models (p < 0.05), LDPE degradation was rapid in the first 20 days after N or P fertilization, and both N and P caused a "priming effect" of LDPE degradation; and (5) N and P fertilization increased both the biodiversity and abundance of several predominant genera of soil microorganisms that degrade LDPE. Therefore, N and P fertilization can accelerate LDPE-MP degradation, and the relatively large amounts of fine debris from degraded LDPE-MPs can be problematic for the environment and soil biota. LDPE-MP pollution should be strictly controlled in mollisols, and the degradation mechanisms of LDPE-MPs warrant further study.


Soil , Microplastics , Polyethylene , Soil Pollutants
18.
Sci Total Environ ; 708: 135091, 2020 Mar 15.
Article En | MEDLINE | ID: mdl-31785906

Plastic pollution, especially microplastic (MP), which is small in size (<5 mm) is one of the main environmental problems in global ecosystems and can cause harm to organisms. Low-density plastic has been widely used in farmlands, but the factors that influence Low-density microplastic (LDMP) distribution are still not clear. In this study, both field investigations at small and large scales and laboratory simulations, and both geostatistics and classical statistics were used to examine LDMP distributions and the main driving factors in farmland soils. The results showed the following. (1) Only polyethylene (PE) of LDMP was found in farmland. (2) The means of LDMP weight content (LDMP-W), LDMP abundance (LDMP-AB) and LDMP area content (LDMP-A) were 0.27 mg kg-1, 107 N kg-1 and 12.6 mm2 kg-1 in mollisol farmlands, respectively. (3) LDMPs were positively correlated with macroplastics (MAP) at the large scale, while any correlations were not obvious at small scales. (4) LDMPs were not only transported by surface soil-water loss (>96%) but were also transported by infiltration through soil pores (<4%). (5). LDMP loss increased with soil bulk density (BD) increasing, and low BD tends to increase LDMP loss by interflow. (6) LDMP distribution was not only influenced by water movement but also maybe influenced by microorganisms and crops. For LDMP pollution control, the focus on both surface soil-water loss and the infiltration processes is necessary, and a combination of the functions of microorganisms and crops probably accelerate LDMP decomposition in soils.

...