Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 30(10): 3509-3517, 2019 Oct.
Artículo en Chino | MEDLINE | ID: mdl-31621238

RESUMEN

Rehmannia glutinosa, a perennial herbaceous species, belongs to the family Scrophularia-ceae. As a staple medicinal material, its tuberous roots are highly valued in traditional Chinese medicine. However, R. glutinosa suffers from serious consecutive monoculture problems in production, which leads to a decline in both productivity and quality. Phyllosphere bacteria, the most abundant component of phyllosphere microorganisms, play crucial roles in plant growth and health. Characterization of phyllosphere bacteria could provide new insights into the mechanisms of consecutive monoculture problems and their control measures. Meanwhile, the varied taxa could be served as an important indicator of consecutive monoculture problems. The barcoded pyrosequencing of 16S rDNA genes combined with a culture-dependent approach was applied to characterize the shifts of bacterial community structure and diversity in the phyllosphere under consecutive monoculture of R. glutinosa. The results showed that consecutive monoculture clearly affected bacterial community structure in the phyllosphere. The phyllosphere bacterial communities of the two-year monocultured (TY) and the diseased plants (DP) were more similar, and different from the one-year monocultured (OY). The evenness, Shannon and Simpson diversity indices were significantly lower in TY and DP than in OY. Species annotation showed that bacterial community in R. glutinosa phyllosphere mainly consisted of Proteobacteria (91.2%), Firmicutes (5.1%) and Actinobacteria (3.7%). There was no significant difference in the number of detected bacterial taxa. However, Proteobacteria was significantly increased while Firmicutes and Actinobacteria were significantly decreased under consecutive monoculture. At the genus level, the relative abundances of genera Exiguobacterium, Bacillus and Arthrobacter, potentially beneficial microorganisms, were significantly higher in OY than that in TY and DP, but it was opposite for the genus Pseudomonas. The results from the culture-dependent approach and pathogenicity test showed that Pseudomonas plecoglossicida D9, widely isolated from the diseased leaves, was highly pathogenic to leaves. In conclusion, R. glutinosa monoculture resulted in distinct phyllosphere bacterial community variation with the accumulation of pathogen loads at the expense of beneficial microorganisms, which could contribute to the occurrence of leaf disease symptoms,and aggravate R. glutinosa replant disease in a monoculture regime.


Asunto(s)
Rehmannia , Bacterias , ADN Ribosómico , Raíces de Plantas , Pseudomonas
2.
Ying Yong Sheng Tai Xue Bao ; 27(11): 3623-3630, 2016 Nov 18.
Artículo en Chino | MEDLINE | ID: mdl-29696861

RESUMEN

Pseudostellaria heterophylla is a perennial herbaceous plant in the family Caryophyllaceae. The tuberous roots of P. heterophylla are highly valued in traditional Chinese medicine and have a high market demand. However, extended monoculture of P. heterophylla results in a significant decline in the biomass and quality, and escalates disease and pest problems. Therefore, it is important to understand the underlying mechanism and biocontrol methods for consecutive monoculture problems. With "Zheshen 2" as an experimental material, the changes in the contents of main nutrients in soil, phenolic acids and specific microbes under monoculture and different amendments were analyzed by using high performance liquid chromatography (HPLC) and qPCR. The results showed that consecutive monoculture of P. heterophylla led to a decrease in yield by 43.5% while the microbial fertilizer treatment and the paddy-upland rotation could relieve the consecutive monoculture problems. Available nitrogen, available phosphorus, available potassium and total potassium were significantly higher in the consecutively monocultured soils than in the newly planted soils. But consecutive monoculture resulted in soil acidification. HPLC analysis showed that conse-cutive monoculture of this plant did not lead to a consistent accumulation of soil phenolic acids. At middle stage of root expansion and at harvest stage, most of phenolic acids were even higher in the newly planted soils than in the consecutively monocultured soils. Furthermore, qPCR analysis showed that the amounts of three specific pathogens identified previously (i.e. Fusarium oxysporum, Talaromyces helicus, Kosakonia sacchari) were significantly higher in the consecutively monocultured soils than in the newly planted soils. However, the microbial fertilizer treatment and the paddy-upland rotation resulted in a significant decline in the population of these specific pathogens and improved the soil environment. In conclusion, the consecutive monoculture problems of P. heterophylla may be due to the rapid proliferation of host-specific pathogens, rather than the deficiency of soil nutrients and the autotoxicity of allelochemicals in root exudates. The results in this study could provide the theoretical basis to explore the underlying mechanism of replanting disease of P. heterophylla and its biocontrol strategies.


Asunto(s)
Caryophyllaceae/crecimiento & desarrollo , Hidroxibenzoatos/química , Rizosfera , Microbiología del Suelo , Suelo/química , Cromatografía Líquida de Alta Presión , Fertilizantes , Fusarium , Nitrógeno/química , Fósforo/química , Raíces de Plantas , Potasio/química , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
PLoS One ; 8(8): e68784, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950876

RESUMEN

Reduced sensitivity of prostate cancer (PC) cells to radiation therapy poses a significant challenge in the clinic. Activation of epidermal growth factor receptor (EGFR), type 1 insulin-like growth factor receptor (IGF1R), and crosstalk between these two signaling pathways have been implicated in the development of radiation resistance in PC. This study assessed the effects of targeting both receptors on the regulation of radio-sensitivity in PC cells. Specific inhibitors of EGFR and IGF1R, Erlotinib and AG1024, as well as siRNA targeting EGFR and IGF1R, were used to radio-sensitize PC cells. Our results showed that co-inhibiting both receptors significantly dampened cellular growth and DNA damage repair, and increased radio-sensitivity in PC cells. These effects were carried out through synergistic inhibition of homologous recombination-directed DNA repair (HRR), but not via inhibition of non-homologous end joining (NHEJ). Furthermore, the compromised HRR capacity was caused by reduced phosphorylation of insulin receptor substrate 1 (IRS1) and its subsequent interaction with Rad51. The synergistic effect of the EGFR and IGF1R inhibitors was also confirmed in nude mouse xenograft assay. This is the first study testing co-inhibiting EGFR and IGF1R signaling in the context of radio-sensitivity in PC and it may provide a promising adjuvant therapeutic approach to improve the outcome of PC patients to radiation treatment.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Tolerancia a Radiación , Receptor IGF Tipo 1/antagonistas & inhibidores , Reparación del ADN por Recombinación , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Reparación del ADN por Unión de Extremidades , Modelos Animales de Enfermedad , Receptores ErbB/genética , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , Ratones , Neoplasias de la Próstata/radioterapia , Recombinasa Rad51/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Fármacos Sensibilizantes a Radiaciones/farmacología , Receptor IGF Tipo 1/genética , Reparación del ADN por Recombinación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tirfostinos/farmacología
4.
PLoS One ; 8(1): e50175, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23365634

RESUMEN

Bladder cancer is the most common malignant urological disease in China. Hydroxycamptothecin (HCPT) is a DNA topoisomerase I inhibitor, which has been utilized in chemotherapy for bladder cancer for nearly 40 years. Previous research has demonstrated that the isoflavone, genistein, can sensitize multiple cancer cell lines to HCPT treatment, such as prostate and cervical cancer. In this study, we investigated whether genistein could sensitize bladder cancer cell lines and bladder epithelial cell BDEC cells to HCPT treatment, and investigated the possible underlying molecular mechanisms. Genistein could significantly and dose-dependently sensitize multiple bladder cancer cell lines and BDEC cells to HCPT-induced apoptosis both in vitro and in vivo. Genistein and HCPT synergistically inhibited bladder cell growth and proliferation, and induced G2/M phase cell cycle arrest and apoptosis in TCCSUP bladder cancer cell and BDEC cell. Pretreatment with genistein sensitized BDEC and bladder cancer cell lines to HCPT-induced DNA damage by the synergistic activation of ataxia telangiectasia mutated (ATM) kinase. Genistein significantly attenuated the ability of HCPT to induce activation of the anti-apoptotic NF-κB pathway both in vitro and in vivo in a bladder cancer xenograft model, and thus counteracted the anti-apoptotic effect of the NF-κB pathway. This study indicates that genistein could act as a promising non-toxic agent to improve efficacy of HCPT bladder cancer chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Camptotecina/análogos & derivados , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genisteína/farmacología , Transducción de Señal/efectos de los fármacos , Inhibidores de Topoisomerasa I/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada , Camptotecina/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Fragmentación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Ratones , Ratones Desnudos , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA